Многоугольником называется фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек. Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины. Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине. Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника. Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О. Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°. В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360° Таким образом, сумма всех внутренних углов многоугольника равна n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Объяснение:
з1) 5х+4х=180
9х=180
х=20
<1=5х=5*20=100
<1=<4
<2=4х=4*20=80
<2=<3
з2) <АСВ=<АВС=25
<ВАС=180-(25+25)=180-50=130
<ВАС=<ДВЕ=150
з3) <ВСД=<АВС+<ЕДС
70=3х+4х
70=7х
х=10
<АВС=3*10=30
<ЕДС=4*10=40
з4) (х+20)+х=140
2х=120
х=60
<СВЕ=60 <СВД=80
<АВЕ=<СДВ=40
<АВС=40+60=100
вар1) 1) 3х+х=180
4х=180
х=45
<2=3х=3*45=135
<1=х=45
2) <2=130
<1=<3=180-130=50
3) <АЕК=90:2=45
вар2) 1) х+(х-40)=180
2х=220
х=110 <2
110-40=70 <1
2) <1=<3=120
<2=180-120=60
3) <МСК=90-<КСД=90-40=50
Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины.
Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.
Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника.
Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О.
Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°.
В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360°
Таким образом, сумма всех внутренних углов многоугольника равна
n*180° - 360° = (n-2)*180°, что и требовалось доказать.