сторона АС треугольника АВС равна 21 си на стороне ВС взята точка D проведена прямая пароллельная АВ и пересекающая АС в точке Е чему равны длины отрезков АЕ И ЕС
Сначала хотел написать, что из условия неясно, на какой стороне отмечена точка H, а потом понял, что это неважно: расстояния равны до обеих точек)
Для решения этой задачи будем использовать две теоремы: а) Диагонали параллелограмма в точке пересечения делятся пополам. б) Центр описанной окружности в прямоугольном треугольнике лежит на середине гипотенузы (или, говоря по-другому, центр гипотенузы равноудалён от всех вершин).
1. Строим чертёж. O — точка пересечения диагоналей. Голубым цветом отмечены высоты, зелёным — диагональ, красным пунктиром — искомое расстояние.
2. Рассмотрим прямоугольный треугольник AHC. Точка О лежит на середине стороны AC (теорема "а"), то есть гипотенузы. Следовательно, это центр описанной окружности (теорема "б"), а значит, точка O равноудалена от всех вершин: HO=AO=OC=2.5.
3. Рассмотрим теперь прямоугольный треугольник CKA. По такой же логике получаем, что OK=AO=OC=2.5.
Для решения этой задачи будем использовать две теоремы:
а) Диагонали параллелограмма в точке пересечения делятся пополам.
б) Центр описанной окружности в прямоугольном треугольнике лежит на середине гипотенузы (или, говоря по-другому, центр гипотенузы равноудалён от всех вершин).
1. Строим чертёж. O — точка пересечения диагоналей. Голубым цветом отмечены высоты, зелёным — диагональ, красным пунктиром — искомое расстояние.
2. Рассмотрим прямоугольный треугольник AHC. Точка О лежит на середине стороны AC (теорема "а"), то есть гипотенузы. Следовательно, это центр описанной окружности (теорема "б"), а значит, точка O равноудалена от всех вершин: HO=AO=OC=2.5.
3. Рассмотрим теперь прямоугольный треугольник CKA. По такой же логике получаем, что OK=AO=OC=2.5.
p= (AB+BC+AC)/2 =18
H= 2√[p(p-AB)(p-BC)(p-AC)]/AC =
= 2√(18*6*8*4)/14 = 24√6/7
В треугольниках BAK1, BCM1 биссектриса является высотой => т. равнобедренные.
CB=CM1
AB=AK1
M1K1= AC-(AC-AK1)-(AC-CM1) = AB+CB-AC = 8
SBK1M1= M1K1*H /2 =4*24√6/7
В равнобедренных т. биссектриса является также медианой => MK соединяет середины BM1 и BK1 => MK - средняя линия BK1M1.
Площадь треугольника, отсекаемого средней линией, равна 1/4 площади исходного.
SBKM = SBK1M1 /4 = 24√6/7 (~8,4)