Сторона АС треугольника АВС равна 27 см. Сторона ВС разделена на 3 равные части и через точки деления проведены прямые, параллельные стороне АС. Найдите длины отрезков этих прямых, содержащихся между сторонами треугольника.
Вписане коло трикутника — це найбільше коло, розташоване в трикутнику, яке дотичне до трьох його сторін. Центр вписаного в трикутник кола називають інцентром. Інцентр також є точкою перетину бісектрис трикутника. Традиційно позначають латинською літерою I.
Центр вписаного кола можна знайти, як точку перетину трьох бісектрис внутрішніх кутів. Центр зовнівписаного кола можна знайти, як точку перетину бісектриси внутрішнього кута і двох бісектрис зовнішніх кутів. З цього випливає, що центр вписаного кола разом з трьома центрами зовнішніх вписаних кіл утворюють ортоцентричну систему.
ответ:Имеется есть 10 квадратных карточек, стороны которых равны соответственно 10 единиц, 9, 8 и т.д. до 1 единицы. Карточки с четными сторонами, черные, а остальные карточки белые. Положим на стол самую большую карточку (это черная карточка со стороной 10 единиц). Потом на нее (так, чтобы она лежала в левом верхнем углу черной карточки) положим белую карточку со стороной 9 единиц (см. рис. а). Затем на нее (в левый нижний угол) положим черную карточку со стороной 8 (рис. б). На нее (в правый нижний угол) кладем следующую по размеру карточку. Продолжим этот процесс далее, причем положения карточек как бы “закручиваются’’ внутрь против часовой стрелки. Вопрос: какой рисунок получится после выкладывания последней карточки?
Немного отвлечемся от задачек, чтобы вы сразу не бросались читать решения, а немного сами подумали над ними. Впрочем, как всегда ;) .
Стивен Барр — американский писатель и любитель математики. К математике Барр обратился довольно поздно. Он заинтересовался задачами моделирования сложных поверхностей, что и привело к тому, что он начал ей заниматься. Его интерес подерживал Мартин Гарднер. В США Барр издал три книги, которые имели довольно большой успех, возможно, даже больший, чем его художественные произведения.
А теперь приведу решения задач.
1. Произведение в знаменателе — это разность квадратов:
не
Объяснение:
Вписане коло трикутника — це найбільше коло, розташоване в трикутнику, яке дотичне до трьох його сторін. Центр вписаного в трикутник кола називають інцентром. Інцентр також є точкою перетину бісектрис трикутника. Традиційно позначають латинською літерою I.
Центр вписаного кола можна знайти, як точку перетину трьох бісектрис внутрішніх кутів. Центр зовнівписаного кола можна знайти, як точку перетину бісектриси внутрішнього кута і двох бісектрис зовнішніх кутів. З цього випливає, що центр вписаного кола разом з трьома центрами зовнішніх вписаних кіл утворюють ортоцентричну систему.
ответ:Имеется есть 10 квадратных карточек, стороны которых равны соответственно 10 единиц, 9, 8 и т.д. до 1 единицы. Карточки с четными сторонами, черные, а остальные карточки белые. Положим на стол самую большую карточку (это черная карточка со стороной 10 единиц). Потом на нее (так, чтобы она лежала в левом верхнем углу черной карточки) положим белую карточку со стороной 9 единиц (см. рис. а). Затем на нее (в левый нижний угол) положим черную карточку со стороной 8 (рис. б). На нее (в правый нижний угол) кладем следующую по размеру карточку. Продолжим этот процесс далее, причем положения карточек как бы “закручиваются’’ внутрь против часовой стрелки. Вопрос: какой рисунок получится после выкладывания последней карточки?
Немного отвлечемся от задачек, чтобы вы сразу не бросались читать решения, а немного сами подумали над ними. Впрочем, как всегда ;) .
Стивен Барр — американский писатель и любитель математики. К математике Барр обратился довольно поздно. Он заинтересовался задачами моделирования сложных поверхностей, что и привело к тому, что он начал ей заниматься. Его интерес подерживал Мартин Гарднер. В США Барр издал три книги, которые имели довольно большой успех, возможно, даже больший, чем его художественные произведения.
А теперь приведу решения задач.
1. Произведение в знаменателе — это разность квадратов:
\[1234567890\cdot 1234567892=(1234567891-1)\cdot(1234567891+1)=1234567891^2-1,\]
откуда знаменатель сразу находится — он равен 1. Соответственно, вся дробь равна числителю, и это 1234567890.
2. Получится черный квадрат, на котором расположена белая спираль, состоящая из квадратиков, которая закручивается внутрь по часовой стрелке:
Объяснение: