сторона квадрата равна 1. Расстояние от вершины до прямой пересекающей две соседние его стороны, также равно 1. Найдите периметр отсеченного от квадрата треугольника
Пирамида – это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.
Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины. Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
Рассмотрим пример расчета площади боковой поверхности пирамиды.
Пусть дана пирамида с основанием ABCDE и вершиной F. AB=BC=CD=DE=EA=3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды. Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен: Теперь можно найти боковую площадь пирамиды: Площадь правильной треугольной пирамиды
Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади. Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.
Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды. Для начала находим площадь одной из боковых граней. В данном случае она будет: Подставляем значения в формулу: Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:
Площадь усеченной пирамиды
Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию. Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:
Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.
Дана правильная четырехугольная пирамида. Длины основания равны b = 5 см, c = 3 см. Апофема a = 4 см. Найдите площадь боковой поверхности фигуры. Для начала найдем периметр оснований. В большем основании он будет равен: В меньшем основании: Посчитаем площадь:
Таким образом, применив несложные формулы, мы нашли площадь усеченной пирамиды.
это канонический вид уравнения. 12х-9у+72 = 0, сократим на 3: 4х-3у+24 = 0 общий вид этого уравнения. у = (4/3)х+8 уравнение с коэффициентом.
2) уравнение высоты, проведенной из вершины В. Эта высота перпендикулярна АС и имеет коэффициент при х, равный -1/(4/3) = -3/4. Уравнение высоты из точки В имеет вид у = (-3/4)х+в. Для нахождения коэффициента в в полученное уравнение подставим координаты точки В. 1 = (-3/4)*1+в, в = 1+(3/4) = 7/4. Тогда уравнение примет вид у = (-3/4)х+(7/4) или в общем виде 3х+4у-7 = 0.
3) длина высоты из вершины В. Надо найти координаты основания высоты как точку пересечения высоты и стороны АС. 4х-3у+24 = 0|x3 12x-9y+72 = 0 3х+4у-7 = 0|x-4 -12x-16y+28 = 0 ______________ -25y+100 =0 y = 100/25 = 4. x = (3y-24)/4 = (3*4-24)/4 = -12/4 = -3. Точка Д(-3; 4). Длина высоты ВД равна: BД = √((Хд-Хв)²+(Уд-Ув)²) = √25 = 5.
4) угол А. Для этого найдём длины сторон: 1) Расчет длин сторон АВ = √((Хв-Ха)²+(Ув-Уа)²) = √50 = 7,071067812, BC = √((Хc-Хв)²+(Ус-Ув)²) = √125 = 11,18033989, AC = √((Хc-Хa)²+(Ус-Уa)²) = √225 = 15. cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0,707107 A = 0,785398 радиан = 45 градусов.
Пирамида – это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.
Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
Рассмотрим пример расчета площади боковой поверхности пирамиды.
Пусть дана пирамида с основанием ABCDE и вершиной F. AB=BC=CD=DE=EA=3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды.Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен:
Теперь можно найти боковую площадь пирамиды: Площадь правильной треугольной пирамиды
Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды.Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади.
Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.
Для начала находим площадь одной из боковых граней. В данном случае она будет:
Подставляем значения в формулу:
Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:
Площадь усеченной пирамиды
Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию.
Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:
Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.
Дана правильная четырехугольная пирамида. Длины основания равны b = 5 см, c = 3 см. Апофема a = 4 см. Найдите площадь боковой поверхности фигуры.Для начала найдем периметр оснований. В большем основании он будет равен:
В меньшем основании:
Посчитаем площадь:
Таким образом, применив несложные формулы, мы нашли площадь усеченной пирамиды.
1) уравнение стороны АС:
это канонический вид уравнения.
12х-9у+72 = 0, сократим на 3: 4х-3у+24 = 0 общий вид этого уравнения.
у = (4/3)х+8 уравнение с коэффициентом.
2) уравнение высоты, проведенной из вершины В.
Эта высота перпендикулярна АС и имеет коэффициент при х, равный -1/(4/3) = -3/4.
Уравнение высоты из точки В имеет вид у = (-3/4)х+в.
Для нахождения коэффициента в в полученное уравнение подставим координаты точки В.
1 = (-3/4)*1+в,
в = 1+(3/4) = 7/4.
Тогда уравнение примет вид у = (-3/4)х+(7/4) или в общем виде
3х+4у-7 = 0.
3) длина высоты из вершины В.
Надо найти координаты основания высоты как точку пересечения высоты и стороны АС.
4х-3у+24 = 0|x3 12x-9y+72 = 0
3х+4у-7 = 0|x-4 -12x-16y+28 = 0
______________
-25y+100 =0 y = 100/25 = 4.
x = (3y-24)/4 = (3*4-24)/4 = -12/4 = -3.
Точка Д(-3; 4). Длина высоты ВД равна:
BД = √((Хд-Хв)²+(Уд-Ув)²) = √25 = 5.
4) угол А. Для этого найдём длины сторон:
1) Расчет длин сторон
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √50 = 7,071067812,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √125 = 11,18033989,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √225 = 15.
cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0,707107
A = 0,785398 радиан = 45 градусов.