Сторона основания правильной треугольной призмы равна 24 см, боковое ребро равно 12 см. найдите площадь сечения, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания.
сечением здесь будет равнобедренный треугольник, с основанием, равным стороне основания призмы, и боковой стороной, которая является гипотенузой прямоугольного треугольника с катетами, равными высоте призмы и стороне ее основания.
Найдем боковую сторону сечения в=√(12²+24²)=√720 см.
Площадью треугольника сечения будет произведение его высоты на половину основания. Высота в свою очередь равна катету в прямоугольном треугольнике с гипотенузой в и катетом 24/2=12 см.
288 см²
Объяснение:
сечением здесь будет равнобедренный треугольник, с основанием, равным стороне основания призмы, и боковой стороной, которая является гипотенузой прямоугольного треугольника с катетами, равными высоте призмы и стороне ее основания.
Найдем боковую сторону сечения в=√(12²+24²)=√720 см.
Площадью треугольника сечения будет произведение его высоты на половину основания. Высота в свою очередь равна катету в прямоугольном треугольнике с гипотенузой в и катетом 24/2=12 см.
Найдем высоту: н=√(720-12²)=24 см
тогда площадь сечения равна 24·12=288 см²