Вектор а пропорционален вектору, полученному векторным умножением векторов b и c.
Находим d = b x c по Саррюса:
i j k| i j
-4 -7 5| -4 -7
-8 -8 7| -8 -8 = -49i - 40j + 32k + 28j + 40i - 56k = -9i - 12j - 24k.
Получили вектор d, кратный вектору а:
d = (-9; -12; -24). его модуль равен:
|d| = √((-9)² + (-12)² + (-24)²) = √(81 + 144 + 576) = √801.
Подкоренное выражение кратно заданному 801/89 = 9.
То есть модуль а в 3 раза меньше.
Но ортогональным вектор а может иметь как в одном направлении, так и в противоположном.
Поэтому имеются 2 решения:
a = (-3; -4; -8),
(3; 4; 8).
Равносильно - найти сторону равностороннего треугольника, если радиус описанной окружности 35*корень(3).
Такое хитромудрое решение :))) радиус ВПИСАННОЙ окружности = 35*корень(3)/2,
половина стороны равна (35*корень(3)/2)*корень(3) = 105/2, сторона 105 :)))
На самом деле я воспользовался кучей особенностей равносторонего треугольника, а можно сразу записать по теореме синусов a = 2*R*sin(60) = 105.
Можно сказать, что высота равна (3/2)*R (опять используется совпадение центров), а сторона равна h/(корень(3)/2); ответ будет одинаковый.
а = 105.
Вектор а пропорционален вектору, полученному векторным умножением векторов b и c.
Находим d = b x c по Саррюса:
i j k| i j
-4 -7 5| -4 -7
-8 -8 7| -8 -8 = -49i - 40j + 32k + 28j + 40i - 56k = -9i - 12j - 24k.
Получили вектор d, кратный вектору а:
d = (-9; -12; -24). его модуль равен:
|d| = √((-9)² + (-12)² + (-24)²) = √(81 + 144 + 576) = √801.
Подкоренное выражение кратно заданному 801/89 = 9.
То есть модуль а в 3 раза меньше.
Но ортогональным вектор а может иметь как в одном направлении, так и в противоположном.
Поэтому имеются 2 решения:
a = (-3; -4; -8),
(3; 4; 8).
Равносильно - найти сторону равностороннего треугольника, если радиус описанной окружности 35*корень(3).
Такое хитромудрое решение :))) радиус ВПИСАННОЙ окружности = 35*корень(3)/2,
половина стороны равна (35*корень(3)/2)*корень(3) = 105/2, сторона 105 :)))
На самом деле я воспользовался кучей особенностей равносторонего треугольника, а можно сразу записать по теореме синусов a = 2*R*sin(60) = 105.
Можно сказать, что высота равна (3/2)*R (опять используется совпадение центров), а сторона равна h/(корень(3)/2); ответ будет одинаковый.
а = 105.