Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
AD = (√21)/5 ед.
Объяснение:
Биссектриса AD угла А треугольника АВС делит противоположную сторонуВС в отношении прилежащих сторон.
То есть BD/DC = 4/1. ВС =АВ = 4 ед.
Значит СD = 4/5 ед.
Проведем высоту ВН. В равнобедренном треугольнике АВС высота является и медианой. АН = НС = 1/2 ед.
В прямоугольном треугольнике АВН
CosA = AH/AB = (1/2)/4 = 1/8.
Углы при основании равнобедренного треугольника равны.
CosC = CosA = 1/8.
В треугольнике ADC по теореме косинусов:
AD = √(AC²+DC² - 2·AC·DC·CosC) =>
AD = √(1+16/25 - 2·1·4/5·1/8) => AD = √(21/25).
AD = (√21)/5 ед.