Когда нам дано, что подобны треугольники, то, чтобы записать пропорциональность сторон, имеется два 1)смотрим на рисунок и определяем пропорциональность исходя из признака. 2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы. Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым Т.к. подобны треугольники WMF и WAV, то записывается это так: WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню). Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон: WM/WA = WF/WV WM=WA*WF/WV = 26*19/24,7 = 20(дм). Теперь определим признак подобия. Их всего 3: 1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. 2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны. 3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет. Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный. ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)
Судя по тому, что ∠АВС= 120°, параллелепипед не прямоугольный, а прямой. Это "две большие разницы".
Итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной ВС = 5 см, диагональю АС=7см и углом АВС = 120°. По теореме косинусов попробуем найти сторону АВ.
1)смотрим на рисунок и определяем пропорциональность исходя из признака.
2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы.
Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым
Т.к. подобны треугольники WMF и WAV, то записывается это так:
WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню).
Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон:
WM/WA = WF/WV
WM=WA*WF/WV = 26*19/24,7 = 20(дм).
Теперь определим признак подобия. Их всего 3:
1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны.
3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет.
Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный.
ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)
1)ответ:
V = 5√3/6 ед³.
Sбок = 144 ед².
Объяснение:
Судя по тому, что ∠АВС= 120°, параллелепипед не прямоугольный, а прямой. Это "две большие разницы".
Итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной ВС = 5 см, диагональю АС=7см и углом АВС = 120°. По теореме косинусов попробуем найти сторону АВ.
АС² =АВ²+ВС² - 2·АВ·ВС·Cos120. Cos120 = -Cos60 = - 1/2.
49 = AB²+25 - 2·AB·5·(-1/2) =>
АВ²+5·АВ -24 =0 => AB = 3cм
So = AB·BC·Sin120 = 3·5·√3/2.
V = So·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
Sбок = Р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
2)Обозначим радиус основания конуса R, высоту Н.
По заданию угол, тангенс которого равен Н/R, равен 30 градусов.
Н/R = tg30° = √3/3.
Отсюда Н = R√3/3 см.
Площадь сечения S = (1/2)*2R*H =RH = R*(R√3/3) = R²√3/3 см².
Приравняем по заданию: R²√3/3 = 9√3 см².
R² = 9*3, а R = 3√3 см.
Высота Н = R√3/3 = (3√3)*(√3/3) = 3 см.