Стороны основания наклонного параллелепипеда равны 10 см и 26 см, синус угла между ними 4/13. высота параллелепипеда 10 см. найдите площадь полной поверхности наклонного параллелепипеда
По теореме Пифагора найдем второй катет Он равен корень квадратный из 81-36= 3 корень квадратный из 5. Пусть проекция одного катета равна х, а второго 9-х.Высота опущенная из прямого угла прямоугольного треугольника делит данный треугольник на два прямоугольных треугольников. По теореме Пифагора найдем высоту из одного прямоугольного треугольника h=36-x^2. Теперь эту же высоту найдем из второго треугольника, так как эта высота является общей стороной двух прямоугольных треугольников. h=45-(9-x)^2. приравняем и получим уравнение:
36-x^2=45-81+18x-x^2
18x=72
x=4 (проекция одного из катетов)
9-4=5(проекция второго катета)
Теперь найдем высоту прямоугольного треугольника по теореме Пифагора: h= корень квадратный из 36-16= корень квадратный из 20=2 корень квадратный из 5
d(М, АВ) = d(M, BC) = 4 дм
d(M, AD) = d(M, СD) = 2√5 дм
d(M, BD) = 4 дм
d(M, AC) = 3√2 дм
Объяснение:
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к этой прямой.
МВ - перпендикуляр к плоскости квадрата, а значит, и к любой прямой, лежащей в этой плоскости.
МВ⊥АВ, значит расстояние от точки М до прямой АВ
d(М, АВ) = МВ = 4 дм
МВ⊥ВС, значит
d(M, BC) = MB = 4 дм
МВ⊥BD, значит
d(M, BD) = MB = 4 дм
BA⊥AD как стороны квадрата,
ВА - проекция МА на плоскость, значит МА⊥AD по теореме о трех перпендикулярах, тогда
d(M, AD) = MA
Аналогично, ВС⊥CD как стороны квадрата, ВС - проекция МС на плоскость, значит МС⊥CD по теореме о трех перпендикулярах, тогда
d(M, СD) = MС
Если равны проекции наклонных, проведенных из одной точки, то равны и сами наклонные:
ВС = ВА (стороны квадрата), значит МС = МА.
Из прямоугольного треугольника АВМ по теореме Пифагора:
МА = √(АВ² + ВМ²) = √(4 + 16) = √20 = 2√5 дм
Итак,
d(M, AD) = d(M, СD) = 2√5 дм
Осталось найти расстояние от М до диагонали АС.
ВО⊥АС по свойству диагоналей квадрата,
ВО - проекция МО на плоскость квадрата, значит
МО⊥АС по теореме о трех перпендикулярах.
d(M, AC) = MO
BD = AB√2 =2√2 дм как диагональ квадрата,
BО = BD/2 = √2 дм (диагонали квадрата делятся точкой пересечения пополам)
Из прямоугольного треугольника МВО по теореме Пифагора:
МО = √(ВО² + ВМ²) = √(2 + 16) = √18 = 3√2 дм
d(M, AC) = 3√2 дм
По теореме Пифагора найдем второй катет Он равен корень квадратный из 81-36= 3 корень квадратный из 5. Пусть проекция одного катета равна х, а второго 9-х.Высота опущенная из прямого угла прямоугольного треугольника делит данный треугольник на два прямоугольных треугольников. По теореме Пифагора найдем высоту из одного прямоугольного треугольника h=36-x^2. Теперь эту же высоту найдем из второго треугольника, так как эта высота является общей стороной двух прямоугольных треугольников. h=45-(9-x)^2. приравняем и получим уравнение:
36-x^2=45-81+18x-x^2
18x=72
x=4 (проекция одного из катетов)
9-4=5(проекция второго катета)
Теперь найдем высоту прямоугольного треугольника по теореме Пифагора: h= корень квадратный из 36-16= корень квадратный из 20=2 корень квадратный из 5