Стороны треугольника 3см, 6см, и √45см Найдите его 1) биссектрису проведенную из вершины большего угла, 2) медиану проведенную из вершины меньшего угла.
Надо полагать, речь о построении циркулем и линейкой. - нам дана сторона ромба а - и сумма длин его диагоналей d₁+d₂ Диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам. Надо построить прямоугольный треугольник, гипотенуза которого равна стороне ромба, а вершина с углом 90 градусов - центр ромба 1. Строим отрезок длиной в половину суммы диагоналей d₁+d₂ 2. От левой его стороны вправо вверх строим луч под углом 45° 3. От правой стороны отрезка строим окружность, радиусом равную стороне ромба а 4. До первой слева точки пересечения окружности и луча проводим отрезок 5. От точки пересечения окружности и луча опускаем вниз перпендикуляр. 6. На картинке красный прямоугольный треугольник, в нём, построены половинки диагоналей, и гипотенуза - стороны треугольника. 7. и достраиваем до ромба
Из условия параллельности сторон треугольника и трапеции следует равенство углов КМТ и ВДА. Далее следует равенство треугольников КМТ и ВДА. Площадь трапеции равна площади треугольника. Высота трапеции равна половине основания треугольника. Отсюда находим эти значения: АЕ = Н = 42/7 = 6.
Для масштабного построения рисунка вызывает интерес определение радиуса окружности, в которую вписаны равнобедренный остроугольный треугольник и трапеция. Основание треугольника равно 2*6 = 12. Тогда его высота равна 2S/12 = 2*42/12 = 84/12 = 7. R = abc/(4S) = а²с/(4S) (для равнобедренного треугольника). Находим боковые стороны: а² = 6² + 7² = 36 + 49 = 85. Тогда R = (85*12)/(4*42) = 85/14 ≈ 6,0714286.
- нам дана сторона ромба а
- и сумма длин его диагоналей d₁+d₂
Диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам.
Надо построить прямоугольный треугольник, гипотенуза которого равна стороне ромба, а вершина с углом 90 градусов - центр ромба
1. Строим отрезок длиной в половину суммы диагоналей d₁+d₂
2. От левой его стороны вправо вверх строим луч под углом 45°
3. От правой стороны отрезка строим окружность, радиусом равную стороне ромба а
4. До первой слева точки пересечения окружности и луча проводим отрезок
5. От точки пересечения окружности и луча опускаем вниз перпендикуляр.
6. На картинке красный прямоугольный треугольник, в нём, построены половинки диагоналей, и гипотенуза - стороны треугольника.
7. и достраиваем до ромба
Площадь трапеции равна площади треугольника.
Высота трапеции равна половине основания треугольника.
Отсюда находим эти значения: АЕ = Н = 42/7 = 6.
Для масштабного построения рисунка вызывает интерес определение радиуса окружности, в которую вписаны равнобедренный остроугольный треугольник и трапеция.
Основание треугольника равно 2*6 = 12. Тогда его высота равна 2S/12 = 2*42/12 = 84/12 = 7.
R = abc/(4S) = а²с/(4S) (для равнобедренного треугольника).
Находим боковые стороны: а² = 6² + 7² = 36 + 49 = 85.
Тогда R = (85*12)/(4*42) = 85/14 ≈ 6,0714286.