Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
Сечение шара плоскостью - это окружность. Следовательно, площадь сечения шара равна S=π*r². Нам остается найти радиус r. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. Величина угла между пересекающимися плоскостями принадлежит промежутку (0; 90°). Это все определения. В нашем случае ОА - радиус шара, он перпендикулярен к плоскости α. ОО1 - радиус сечения,он перпендикулярен второй плоскости (β). Значит угол ОАО1=45°. Тогда в прямоугольном треугольнике ОАО1 с прямым углом О1 катеты АО1 и ОО1 равны. Следовательно, ОА²=2*АО1², или R²=2*r² отсюда r=R√2/2. Площадь сечения тогда равна S=π*R²/2. ответ: S=π*R²/2.
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения.
Величина угла между пересекающимися плоскостями принадлежит промежутку (0; 90°). Это все определения.
В нашем случае ОА - радиус шара, он перпендикулярен к плоскости α.
ОО1 - радиус сечения,он перпендикулярен второй плоскости (β).
Значит угол ОАО1=45°.
Тогда в прямоугольном треугольнике ОАО1 с прямым углом О1 катеты АО1 и ОО1 равны.
Следовательно, ОА²=2*АО1², или R²=2*r² отсюда r=R√2/2.
Площадь сечения тогда равна S=π*R²/2.
ответ: S=π*R²/2.