остальные стороны попрбуй самостоятельно, смысл в том, что сначала находим координаты прямой, а затем её длину. Длина вектора= sqrt(x^2+y^2), затем, когда найдешь NP и PM сложи их длины.
4)Тоже самое , находишь координаты AB и BC, затем длину, если длины равны, значит равнобедренный, S=высота*сторону основания (AC)
Задача на подобие треугольников и теоремы о параллельных плоскостях и прямых. Проведем через точку М, А2 и В2 плоскость.
А1В1 параллельна А2В2 как линии пересечения параллельных плоскостей третьей плоскостью. Остюда треугольники МА2В2 и МА1В1 подобны. Примем отрезок МВ1 за х Тогда МВ2=9+х, МА2=9+х+4 4:(13+х)=х:(9+х) 36+4х=13х+х² х²+9х-36=0 При необходимости полное решение квадратного уравнения запишете самостоятельно, а корни его 3 и -12. Второй корень не подходит. х=3 см МВ2=9+3=12 см МА2=12+4=16 см
1)
b{-3;4}=sqrt((-3)^2+(4)^2)=sqrt(25)=5, sqrt-корень
тоже самое:
d=sqrt(100+289)=sqrt(389)
f=sqrt(0+100)=10
2)AB=(-5--5;-7-1)=(0;-8), расстояние=sqrt(64)=8
AB=(-4;-3)=sqrt(25)=5
3)P=MN+NP+PM
MN=(12-4;-2-0)=(8;-2)=sqrt(68),
остальные стороны попрбуй самостоятельно, смысл в том, что сначала находим координаты прямой, а затем её длину. Длина вектора= sqrt(x^2+y^2), затем, когда найдешь NP и PM сложи их длины.
4)Тоже самое , находишь координаты AB и BC, затем длину, если длины равны, значит равнобедренный, S=высота*сторону основания (AC)
Удачи!
Задача на подобие треугольников и теоремы о параллельных плоскостях и прямых.
Проведем через точку М, А2 и В2 плоскость.
А1В1 параллельна А2В2 как линии пересечения параллельных плоскостей третьей плоскостью.
Остюда треугольники МА2В2 и МА1В1 подобны.
Примем отрезок МВ1 за х
Тогда МВ2=9+х,
МА2=9+х+4
4:(13+х)=х:(9+х)
36+4х=13х+х²
х²+9х-36=0
При необходимости полное решение квадратного уравнения запишете самостоятельно, а корни его 3 и -12. Второй корень не подходит.
х=3 см
МВ2=9+3=12 см
МА2=12+4=16 см