Суммативное оценивание за раздел «Перпендикулярность в пространстве» ТемаПерпендикулярность прямой и плоскости. Теорема о трех перпендикулярах. Расстояния в пространстве. Время выполнения 30 минут Максимальное количество 12
Вариант 1 Задания: 1. К стене приставлена лестница длиной 13 м. Найдите расстояние от ее верхнего конца до пола, если нижний конец лестницы отодвинут от стены на 7 м?[2] 2. Дана пирамида SABC, где SA перпендикулярна плоскости основания пирамиды. Точка К лежит на отрезке ВС, SК^ВС. Найдите площадь основания, если известно, что SA=5, SК =13, ВС=6. [5] 3. В кубе ABCDA1B1C1D1 ребро равно 18. а) Найдите расстояние от точки С до плоскости BB1D1D. [2] b) Найдите расстояние между прямыми DB1 и CC1. [3] Фото чтоб понятнее
Для вычислений нужно провести сечение сферы плоскостью, проходящей через точки A, B и O. В сечении получится окружность с центром в точке О и радиусом R, равным радиусу сферы. ΔAOB образован хордой АВ и двумя радиусами сферы, ⇒ ΔAOB - равнобедренный ⇒ AC - высота и медиана
а) R = OA = 17 см; AB = 16 см AC = 1/2 AB = 1/2 * 16 = 8 см Расстояние от точки О до прямой АВ измеряется по перпендикуляру ⇒ расстояние равно длине отрезка OC ΔAOC - прямоугольный. По теореме Пифагора OC² = R² - AC² = 17² - 8² = 225 = 15² OC = 15 см
б) AB = 12 см; OC = 8 см AC = 1/2 AB = 1/2 * 12 = 6 см ΔAOC - прямоугольный. По теореме Пифагора R² = AC² + OC² = 6² + 8² = 100 = 10² R = 10 см
в) d = 30 см; OC = 12 см R = d/2 = 30/2 = 15 см ΔAOC - прямоугольный. По теореме Пифагора AC² = R² - OC² = 15² - 12² = 81 = 9² AC = 9 см AB = 2*AC = 2*9 = 18 см
ответ: а) расстояние 15 см; б) радиус сферы 10 см; в) AB = 18 см
ΔAOB образован хордой АВ и двумя радиусами сферы, ⇒
ΔAOB - равнобедренный ⇒ AC - высота и медиана
а) R = OA = 17 см; AB = 16 см
AC = 1/2 AB = 1/2 * 16 = 8 см
Расстояние от точки О до прямой АВ измеряется по перпендикуляру ⇒ расстояние равно длине отрезка OC
ΔAOC - прямоугольный. По теореме Пифагора
OC² = R² - AC² = 17² - 8² = 225 = 15²
OC = 15 см
б) AB = 12 см; OC = 8 см
AC = 1/2 AB = 1/2 * 12 = 6 см
ΔAOC - прямоугольный. По теореме Пифагора
R² = AC² + OC² = 6² + 8² = 100 = 10²
R = 10 см
в) d = 30 см; OC = 12 см
R = d/2 = 30/2 = 15 см
ΔAOC - прямоугольный. По теореме Пифагора
AC² = R² - OC² = 15² - 12² = 81 = 9²
AC = 9 см
AB = 2*AC = 2*9 = 18 см
ответ: а) расстояние 15 см; б) радиус сферы 10 см; в) AB = 18 см
ответ:
объяснение:
1. рассмотрим параллелограмм авсд.
s=ah, а= 6 это следует h=4
2.рассмотрим δ аве, в=5, h=4. тогда по теореме пифагора
хво2степени =5 в степени2 - 4 в степени2 =9
х=3, т.е. ае=дк=3, это следует
3. ед=ад-ае=3
4. рассмотрим δвед, по теореме пифагора следует
хво 2 степени=3во 2степени+4во второй степени=25
×=5,т.е. вд=5
5.проведем дополнительную высоту ск с вершины с и соединяем с основанием ад
6. рассмотрим δ аск, ак=9, ск=4⇒ по теореме пифагора
хво 2степени=9во2степени+4 во 2степени=97
×=√97, т.е. ас=√97