ABC равнобедр. треугольник, АС основание=32см, АВ и ВС сотроны, равные 20см) Расстояние от вершины М до плоскости обозначим МО) А расстояние от М до стороны треугольника обозначим МК МК=5) Тогда мы видим прямоугольный треугольник, МО перпендикуляр, тогда найдем МО по теореме Пифагора МО=√МК²-ОК² ОК-радиус вписанной окружности равнобедр. треуг-ка ОК=√(р-а)²(р-в)/√р р-полупериметр, а-боковая сторона равная 20, в -основание равное 32) р=Р/2=2а+в/2=2*20+32/2=36см ОК=√(36-20)²(36-32)/√36=8/6=4/3см МО=√25-16/9=√209/√9=√209/3см
Многоугольником называется фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек. Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины. Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине. Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника. Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О. Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°. В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360° Таким образом, сумма всех внутренних углов многоугольника равна n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Расстояние от вершины М до плоскости обозначим МО) А расстояние от М до стороны треугольника обозначим МК МК=5) Тогда мы видим прямоугольный треугольник, МО перпендикуляр, тогда найдем МО по теореме Пифагора МО=√МК²-ОК²
ОК-радиус вписанной окружности равнобедр. треуг-ка ОК=√(р-а)²(р-в)/√р
р-полупериметр, а-боковая сторона равная 20, в -основание равное 32)
р=Р/2=2а+в/2=2*20+32/2=36см
ОК=√(36-20)²(36-32)/√36=8/6=4/3см
МО=√25-16/9=√209/√9=√209/3см
Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины.
Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.
Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника.
Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О.
Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°.
В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360°
Таким образом, сумма всех внутренних углов многоугольника равна
n*180° - 360° = (n-2)*180°, что и требовалось доказать.