Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
1) 180° - (48° + 48°) = 84°
В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90°
В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95°
В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный.
ответ: А - 2; Б - 1; В - 3