Урок геометрии по теме "Построение сечений многогранника" 10-й класс
Абакумова Елена Андриановна, учитель математики
Разделы: Математика
Класс: 10
Цели и задачи урока (слайд 1–2)
Повторим геометрические понятия и утверждения
Закрепление навыков построения сечений на примере пирамиды и параллелепипеда.
Обобщение учебного материала по теме через формирование умения применять приёмы построения сечений в новой ситуации
Отработаем умения построения сечений.
Формирование навыков исследовательской работы; в том числе умения синтезировать и анализировать, обобщать, выделять главное.
Формирование специальных умений и навыков, в том числе навыков использования математического языка.
Развитие технического, логического, образно-пространственного мышления учащихся.
Воспитание культуры графического труда.
Материалы и оборудование:
Рабочая тетрадь.
Интерактивная доска
Компьютер.
Ручка, карандаш, резинка.
Раздаточный материал.
Проектор
«Живая математика»
Педагогические средства для решения поставленных задач:
Тип урока: закрепление знаний.
Для повышения эффективности урока и подачи материала в более доступной динамичной форме, использованы слайдовая презентация
Для закрепление знаний материала применены приемы фронтальной работы со слайдом, задана самостоятельная проблемная работа по построению сечений многогранников, стимулирующая саморазвитие учащихся и мотивирующая учащихся на изучение темы «Сечения многогранников» (задачи ЕГЭ).
Ход урока
1. Организационный момент
2. Проверка домашнего задания
(Фронтально, ответы на доске.)
3. Актуализация прежних знаний (повторение аксиом планиметрии, стереометрии и теорем о существовании плоскости, многогранники и их элементы), методы построения сечений.
(Слайды 3–7)
Назовите номер рисунка, на котором изображено сечение параллелепипеда (слайд 8)
Пусть длина будет обозначена буквой а, а ширина - буквой b.
Рассмотрим треугольник АСД, угол Д=90 градусам.
tg(α/2)=b/a, тогда а=b/tg(α/2)
S прям-ка = a*b, значит a = S/b
S пов-ти тела = S внеш. + S внутр.
S внеш. = S усеч. конуса 1 + S усеч. конуса 2
S бок. пов-ти ус. конуса 1 = П (R+r)*b
S бок. пов-ти ус. конуса 2 = П (R+r)*a
Рассмотрим треугольник АСД, угол Д=90 градусам.
Угол АДС = 90 град. - (α/2)
Ниже буквы Е на чертеже есть пересечение черной полосы и серой, обозначь его F(вторую, которая уже есть, убери) , а ниже буквы C, где идет пересечение средней линии треугольника и перпендикуляра, обозначь его за букву O.
Исходя из прямоугольного треугольника ДАF, где угол F - прям-й
sin(90 град. - (α/2)) = AF/AD
AF=AD*cos(α/2)=b*cos(α/2)
AF=r=b*cos(α/2)
AO=R=2r=2b*cos(α/2)
S бок. пов-ти ус. конуса 1 = П*b*(2b*cos(α/2)+b*cos(α/2))=П*b*(3b*cos(α/2))=П*3b^2*cos(α/2)
S бок. пов-ти ус. конуса 2 = П*a*(2b*cos(α/2)+b*cos(α/2))=П*a*3b*cos(α/2)=3П*a*b*cos(α/2)=3П*S*cos(α/2)
S внеш. = 3П*b*cos(α/2) + 3П*S*cos(α/2)
S внутр. = S бок. пов-ти конуса 1 + S бок. пов-ти конуса 2
S бок. пов-ти конуса 1 = П*r*b=П*b*cos(α/2)*b=П*(b^2)*cos(α/2)
S бок. пов-ти конуса 2 = П*r*a=П*b*cos(α/2)*a=П*a*b*cos(α/2)=П*S*cos(α/2)
S внутр. = П*(b^2)*cos(α/2) + П*S*cos(α/2)
S пов-ти тела вращения = 3П*b*cos(α/2) + 3П*S*cos(α/2) + П*(b^2)*cos(α/2) + П*S*cos(α/2) = 2*П*(b^2)*cos(α/2)+2*П*S*cos(α/2) = 4 П*cos(α/2)*((b^2)+S)
b^2=S* tg(α/2)
S пов-ти тела вращения=4 П*cos(α/2)*(( S* tg(α/2)+S)= 4 П*S*cos(α/2)*( tg(α/2)+1)=4П*S*cos(α/2)*(sin(α/2)/cos(α/2))+1=(4*П*S*cos(α/2)*(sin(α/2)+cos(α/2))/cos(α/2)=4П*S*(sin(α/2)+sin(90 град - (α/2)) – в общем там дальше распишешь по формуле суммы косинуса и синуса и к концу придешь к ответу – 4*корень из двух*П*S*cos(45 - (α/2))
Урок геометрии по теме "Построение сечений многогранника" 10-й класс
Абакумова Елена Андриановна, учитель математики
Разделы: Математика
Класс: 10
Цели и задачи урока (слайд 1–2)
Повторим геометрические понятия и утверждения
Закрепление навыков построения сечений на примере пирамиды и параллелепипеда.
Обобщение учебного материала по теме через формирование умения применять приёмы построения сечений в новой ситуации
Отработаем умения построения сечений.
Формирование навыков исследовательской работы; в том числе умения синтезировать и анализировать, обобщать, выделять главное.
Формирование специальных умений и навыков, в том числе навыков использования математического языка.
Развитие технического, логического, образно-пространственного мышления учащихся.
Воспитание культуры графического труда.
Материалы и оборудование:
Рабочая тетрадь.
Интерактивная доска
Компьютер.
Ручка, карандаш, резинка.
Раздаточный материал.
Проектор
«Живая математика»
Педагогические средства для решения поставленных задач:
Тип урока: закрепление знаний.
Для повышения эффективности урока и подачи материала в более доступной динамичной форме, использованы слайдовая презентация
Для закрепление знаний материала применены приемы фронтальной работы со слайдом, задана самостоятельная проблемная работа по построению сечений многогранников, стимулирующая саморазвитие учащихся и мотивирующая учащихся на изучение темы «Сечения многогранников» (задачи ЕГЭ).
Ход урока
1. Организационный момент
2. Проверка домашнего задания
(Фронтально, ответы на доске.)
3. Актуализация прежних знаний (повторение аксиом планиметрии, стереометрии и теорем о существовании плоскости, многогранники и их элементы), методы построения сечений.
(Слайды 3–7)
Назовите номер рисунка, на котором изображено сечение параллелепипеда (слайд 8)
Вспомним, что называем сечением
Пусть длина будет обозначена буквой а, а ширина - буквой b.
Рассмотрим треугольник АСД, угол Д=90 градусам.
tg(α/2)=b/a, тогда а=b/tg(α/2)
S прям-ка = a*b, значит a = S/b
S пов-ти тела = S внеш. + S внутр.
S внеш. = S усеч. конуса 1 + S усеч. конуса 2
S бок. пов-ти ус. конуса 1 = П (R+r)*b
S бок. пов-ти ус. конуса 2 = П (R+r)*a
Рассмотрим треугольник АСД, угол Д=90 градусам.
Угол АДС = 90 град. - (α/2)
Ниже буквы Е на чертеже есть пересечение черной полосы и серой, обозначь его F(вторую, которая уже есть, убери) , а ниже буквы C, где идет пересечение средней линии треугольника и перпендикуляра, обозначь его за букву O.
Исходя из прямоугольного треугольника ДАF, где угол F - прям-й
sin(90 град. - (α/2)) = AF/AD
AF=AD*cos(α/2)=b*cos(α/2)
AF=r=b*cos(α/2)
AO=R=2r=2b*cos(α/2)
S бок. пов-ти ус. конуса 1 = П*b*(2b*cos(α/2)+b*cos(α/2))=П*b*(3b*cos(α/2))=П*3b^2*cos(α/2)
S бок. пов-ти ус. конуса 2 = П*a*(2b*cos(α/2)+b*cos(α/2))=П*a*3b*cos(α/2)=3П*a*b*cos(α/2)=3П*S*cos(α/2)
S внеш. = 3П*b*cos(α/2) + 3П*S*cos(α/2)
S внутр. = S бок. пов-ти конуса 1 + S бок. пов-ти конуса 2
S бок. пов-ти конуса 1 = П*r*b=П*b*cos(α/2)*b=П*(b^2)*cos(α/2)
S бок. пов-ти конуса 2 = П*r*a=П*b*cos(α/2)*a=П*a*b*cos(α/2)=П*S*cos(α/2)
S внутр. = П*(b^2)*cos(α/2) + П*S*cos(α/2)
S пов-ти тела вращения = 3П*b*cos(α/2) + 3П*S*cos(α/2) + П*(b^2)*cos(α/2) + П*S*cos(α/2) = 2*П*(b^2)*cos(α/2)+2*П*S*cos(α/2) = 4 П*cos(α/2)*((b^2)+S)
b^2=S* tg(α/2)
S пов-ти тела вращения=4 П*cos(α/2)*(( S* tg(α/2)+S)= 4 П*S*cos(α/2)*( tg(α/2)+1)=4П*S*cos(α/2)*(sin(α/2)/cos(α/2))+1=(4*П*S*cos(α/2)*(sin(α/2)+cos(α/2))/cos(α/2)=4П*S*(sin(α/2)+sin(90 град - (α/2)) – в общем там дальше распишешь по формуле суммы косинуса и синуса и к концу придешь к ответу – 4*корень из двух*П*S*cos(45 - (α/2))
Объяснение:
Вот так как-то