2 Обозначим вершину данного угла буквой А. Строишь перпендикуляр к стороне в любом месте. На перпендикуляре откладываешь высоту. Получилась точка О.
3 Через нее, через точку О то есть, строишь еще один перпендикуляр, чтоб получилась линия параллельная боковой стороне. На ее пересечении с основанием находишь точку В.
4 В точке В строишь заданный угол, только в другую сторону и на пересечении линий находишь точку С. Три точки есть, треугольник построен. Можно проверить длину полученной высоты, показанна зелённым.
См. вложение.
1 дано угол и выстоа
2 Обозначим вершину данного угла буквой А. Строишь перпендикуляр к стороне в любом месте. На перпендикуляре откладываешь высоту. Получилась точка О.
3 Через нее, через точку О то есть, строишь еще один перпендикуляр, чтоб получилась линия параллельная боковой стороне. На ее пересечении с основанием находишь точку В.
4 В точке В строишь заданный угол, только в другую сторону и на пересечении линий находишь точку С. Три точки есть, треугольник построен. Можно проверить длину полученной высоты, показанна зелённым.
1) в первой четверти
sin - монотонно возрастает, cos - монотонно убывает
во второй четверти
синус монотонно убывает, косинус тоже монотонно убывает.
в третьей четверти
синус монотонно убывает, косинус монотонно возрастает
в четвертой четверти
синус монотонно возрастает, косинус монотонно возраствет.
2)
Данное выражение имеет смысл когда подкоренное выражение неотрицательно, то есть:
cos(x)-√3/2≥0
cos(x)≥√3/2
x≥π/6+2πk,k∈Z
x≥-π/6 +2πn, n∈Z
Если нарисовать единичную окружность и отметить точки -π/6, 0, π/6, π/2, то легко заметить, что -π/6 не входит в данный промежуток.
ответ: 0≤x≤π/6
1) в первой четверти
sin - монотонно возрастает, cos - монотонно убывает
во второй четверти
синус монотонно убывает, косинус тоже монотонно убывает.
в третьей четверти
синус монотонно убывает, косинус монотонно возрастает
в четвертой четверти
синус монотонно возрастает, косинус монотонно возраствет.
2)
Данное выражение имеет смысл когда подкоренное выражение неотрицательно, то есть:
cos(x)-√3/2≥0
cos(x)≥√3/2
x≥π/6+2πk,k∈Z
x≥-π/6 +2πn, n∈Z
Если нарисовать единичную окружность и отметить точки -π/6, 0, π/6, π/2, то легко заметить, что -π/6 не входит в данный промежуток.
ответ: 0≤x≤π/6