Объем такого параллелепипеда равен произведению его трех измерений. одно из этих измерений равно 11см. пусть оставшиеся измерения равны x и y. тогда периметр параллелепипеда равен 4*x+4*y+4*11 =96см. или x+y=13 см. (1) х=13-y (2). площадь полной поверхности параллелепипеда: s=2*(11*x)+2*(11*y)+2*x*y=370 см². или 11*x+11*y+x*y=185 см². или 11(x+y)+x*y=185 см². подставим значение (1): 11*13+x*y=185 => x*y=42. подставим значение из (2): y²-13y+42=0. решаем это квадратное уравнение: y1=(13+√(169-168)/2 = 7см. => x1=6см y2=(13-1)/2=6см. => x2 =6см. тогда объем параллелепипеда равен 6*7*11=462см³. ответ: v=462см³.
ну смотри, угол между прямой и плоскостью, это угол между её проекцией и этой прямой, у тебя же дан косинус угла, если его сократить получится 24/25, у тебя дан прилежащий катет, ты можешь найти гипотенузу:
24/25 = 48/x где - х это гипотенуза
x = 50
так как у тебя даже сказано "перпендикуляр" значит треугольник прямоугольный, ну по теореме пифагора найди, то есть гипотенуза в квадрате минус катет (который равен 48 по условию) в квадрате и всё это под корнем будет равно 14 ( ну это 50 в квадрате - 48 в квадрате и всё это под корнем)
вторая аналогично.
извиняюсь за текст, пишу с компа, телефон без зарядки)
ну смотри, угол между прямой и плоскостью, это угол между её проекцией и этой прямой, у тебя же дан косинус угла, если его сократить получится 24/25, у тебя дан прилежащий катет, ты можешь найти гипотенузу:
24/25 = 48/x где - х это гипотенуза
x = 50
так как у тебя даже сказано "перпендикуляр" значит треугольник прямоугольный, ну по теореме пифагора найди, то есть гипотенуза в квадрате минус катет (который равен 48 по условию) в квадрате и всё это под корнем будет равно 14 ( ну это 50 в квадрате - 48 в квадрате и всё это под корнем)
вторая аналогично.
извиняюсь за текст, пишу с компа, телефон без зарядки)