В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
LitunIlya
LitunIlya
29.09.2020 13:00 •  Геометрия

Тест по теме перпендикуляр и наклонная


Тест по теме перпендикуляр и наклонная

Показать ответ
Ответ:
Dangssa
Dangssa
03.12.2021 09:40
1) угол BAC=42-вписанный и опирается на дугу СВ, следовательно, по свойству вписанного угла, дуга СВ=2*42=84
Угол BOC-центральный и опирается на дугу СВ, следовательно, по свойству центрального угла, угол ВОС=дуге СВ=84

2) угол МОС = 90
Дуга СД- полуокружность =180
Из этих двух следует, что дугаСМ=дуге МД= 90 ( по свойству центрального угла)

Угол МСД вписанный и опирается на дугу МД=90, следовательно, угол МСД=45 (по свойству вписанного угла)

Угол МДС вписанный и опирается на дугу МС=90, следовательно, угол МДС = 45 (по свойству вписанного угла)

Угол МДС =180-45-45=90
0,0(0 оценок)
Ответ:
ПростоАндрей12
ПростоАндрей12
12.05.2023 11:08
Теорема 2
1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ.
Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Доказательство: Пусть а1 и а2 - 2 параллельные прямые и плоскость, перпендикулярная прямой а1. Докажем, что эта плоскость перпендикулярна и прямой а2. Проведем через точку А2 пересечения прямой а2 с плоскостью произвольную прямую х2 в плоскости . Проведем в плоскости через точку А1 пересечения прямой а1 с прямую х1, параллельную прямой х2. Так как прямая а1 перпендикулярна плоскости , то прямые а1 и x1перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а2 и х2 тоже перпендикулярны. Таким образом, прямая а2 перпендикулярна любой прямой х2 в плоскости . А это ( по определению )значит, что прямая а2 перпендикулярна плоскости . Теорема доказана.

Смотри также опорную задачу №2.

Теорема 3
2-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ.
Две прямые, перпендикулярные одной и той же плоскости, параллельны.

Доказательство: Пусть а и b - 2 прямые, перпендикулярные плоскости . Допутим, что прямые а и b не параллельны.
Выберем на прямой b точку С, не лежащую в плоскости . Проведем через точку С прямую b1, параллельную прямой а. Прямая b1 перпендикулярна плоскости по теореме 2. Пусть В и В1 - точки пересечения прямых b и b1 с плоскостью . Тогда прямая ВВ1 перпендикулярна пересекающимся прямым b и b1. А это невозможно. Мы пришли к противоречию. Теорема доказана.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота