Первый признак равенства треугольников: Если 2 стороны и угол между ними одного треугольника равны соответственно 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Следующее задание некорректное.
2. Дано:
Просто перепишите условие
Доказать: треугольники (далее - т.) ABC=PQR
Доказательство:
Т. ABC=PQR по 1 признаку равенства треугольников, так как AC=PQ, углы (далее - у.) C=Q, у. B=R, что и требовалось доказать.
Далее прикреплён чертёж к задаче. К сожалению, отметить равные элементы у меня нет возможности, поэтому отметьте сами(
Около треугольника можно описать окружность, притом только одну. Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам. В правильном треугольнике высота является также медианой и биссектрисой. Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис. Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2 Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R). R= h·2/3 R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2. S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
см. объяснение
Объяснение:
Первый признак равенства треугольников: Если 2 стороны и угол между ними одного треугольника равны соответственно 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Следующее задание некорректное.
2. Дано:
Просто перепишите условие
Доказать: треугольники (далее - т.) ABC=PQR
Доказательство:
Т. ABC=PQR по 1 признаку равенства треугольников, так как AC=PQ, углы (далее - у.) C=Q, у. B=R, что и требовалось доказать.
Далее прикреплён чертёж к задаче. К сожалению, отметить равные элементы у меня нет возможности, поэтому отметьте сами(
P.S. вывод: учите геометрию
Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам.
В правильном треугольнике высота является также медианой и биссектрисой.
Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис.
Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R).
R= h·2/3
R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2.
S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
S= 3п (см^2)
a= √(3·3п/п) <=> a= 3 (см)