Хорошо, пойдем очень сложным путем, используем формулу Sромба=a^2*sinA Имеем основание и 2 стороны треугольника, по теореме косинусов вычислим угол, 144=100+100-200cosA; cosA=-56/200=-0.28("-"значит что угол тупой) Используя основное тригонометрическое тождество высчитаем синус угла sinA=√(1-(-0.28^2))=0.96. Подставим найденные значения в формулу. S=100*0.96=96 Площадь ромба 96 см ответ: 96
У параллелограмма есть свойство, сумма квадратов диагоналей, равна сумме квадратов всех его сторон, т.к ромб частный случай параллелограмма, используем это свойство. Значит d1^2+d2^2=(2a^2),где a - сторона ромба Подставив значения в формулу получим 144+d2^2=400 d^2=256 d=16 Дальше используем формулу площади четырехугольника через диагонали S=(d1*d2)/2 диагонали в ромбе пересекаются под прямым углом, потому синус не учитываем S=(16*12)/2=96 ответ: 96
Теорема Фалеса ( определение) Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. Обобщенная теорема Фалеса: отрезки, высекаемые параллельными прямыми на одной прямой, пропорциональны отрезкам на другой прямой.
Рассмотрим рисунок, данный во вложении. Согласно теореме 2:3=7:х 2х=21 х=10,5 см Обратим внимание на то, что сумма двух отрезков на стороне а равна длине третьего отрезка. Т.е. 2+3=5. Согласно т.Фалеса у=7+х у=7+10,5=17,5 см
К тому же результату придём, если составим и решим пропорцию 3:5=10,5:у у=52,5:3=17,5 ---------- Добавлю, что задачу можно решить через подобие треугольников отношением их сторон. Только это несколько длиннее.
Имеем основание и 2 стороны треугольника, по теореме косинусов вычислим угол, 144=100+100-200cosA; cosA=-56/200=-0.28("-"значит что угол тупой)
Используя основное тригонометрическое тождество высчитаем синус угла sinA=√(1-(-0.28^2))=0.96. Подставим найденные значения в формулу.
S=100*0.96=96
Площадь ромба 96 см
ответ: 96
У параллелограмма есть свойство, сумма квадратов диагоналей, равна сумме квадратов всех его сторон, т.к ромб частный случай параллелограмма, используем это свойство.
Значит
d1^2+d2^2=(2a^2),где a - сторона ромба
Подставив значения в формулу получим
144+d2^2=400
d^2=256
d=16
Дальше используем формулу площади четырехугольника через диагонали
S=(d1*d2)/2 диагонали в ромбе пересекаются под прямым углом, потому синус не учитываем
S=(16*12)/2=96
ответ: 96
Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
Обобщенная теорема Фалеса:
отрезки, высекаемые параллельными прямыми на одной прямой, пропорциональны отрезкам на другой прямой.
Рассмотрим рисунок, данный во вложении.
Согласно теореме
2:3=7:х
2х=21
х=10,5 см
Обратим внимание на то, что сумма двух отрезков на стороне а равна длине третьего отрезка.
Т.е. 2+3=5.
Согласно т.Фалеса
у=7+х
у=7+10,5=17,5 см
К тому же результату придём, если составим и решим пропорцию
3:5=10,5:у
у=52,5:3=17,5
----------
Добавлю, что задачу можно решить через подобие треугольников отношением их сторон. Только это несколько длиннее.