Эта задача очень легко решается,я вложила фото с решением внизу
Чтобы решить задачу тебе надо:
1.Начертить рисунок(см.фото)
2.Написать дано(всё,что известно в задаче)
3.Начать решать
Для начала найдём угол В .Нам известно,что угол DBC равен 130 градусам ,а угол В смежный с ним ,значит угол В равен 180 градусов (сумма смежных углов равна 180 градусов) минус 130 градусов = 50 градусов.Из задачи мы знаем,что угол В равен углу А,это значит,что угол Ф тоже равен 50 градусов.Осталось найти угол С.Из теоремы мы знаем ,что сумма углов треугольника равна 180 градусов ,значит угол С равен 180 градусов минус сумма углов А и В.Мы получим ответ : угол С равен 80 градусов.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
Эта задача очень легко решается,я вложила фото с решением внизу
Чтобы решить задачу тебе надо:
1.Начертить рисунок(см.фото)
2.Написать дано(всё,что известно в задаче)
3.Начать решать
Для начала найдём угол В .Нам известно,что угол DBC равен 130 градусам ,а угол В смежный с ним ,значит угол В равен 180 градусов (сумма смежных углов равна 180 градусов) минус 130 градусов = 50 градусов.Из задачи мы знаем,что угол В равен углу А,это значит,что угол Ф тоже равен 50 градусов.Осталось найти угол С.Из теоремы мы знаем ,что сумма углов треугольника равна 180 градусов ,значит угол С равен 180 градусов минус сумма углов А и В.Мы получим ответ : угол С равен 80 градусов.
Объяснение:
Дано: ABCD - ромб, BD = 24см, AC = 10см;
Знайти: <A, <B, <C, <D;
Рішення.
1) AB = BC = CD = AD, ВО = ½BD, BO = 12 і AO = ½AC AO = 5 (за властивостями ромба), по теоремі Піфагора AB² = BO² + AO², АВ² = 12² + 5², AB² = 169, AB = 13;
2) <A = <B = <C = <D, <ABO = <CBO, <BAO = <DAO (за властивостями ромба), sin ABO = AO / AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68 °, <BAO = 180 ° - <BOA- <ABO, <BAO = 180 ° -90 ° -68 ° = 22 °,
3) <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °
Відповідь: <A = 44 °, <B = 136 °, <C = 44 °, <D = 136 °.