угол 4 и угол 6 односторонние при а||b и секущей с => 4+6=180 => 6=180-35=145°
угол 2=6 как соответственные при а||b и секущей с (второй вариант доказательства того, что угол 2=6), 6=3 как накрест лежащие при а||b и секущей с угол 3=7 как соответственные или угол 6=7 как вертикальные =>
а) пусть угол 1=35°
на прикреплённом фото все углы обозначены
1=4 как вертикальные, 4=5 как накрест лежащие при а||b и секущей с, 5=8 как вертикальные => 1=4=5=8=35°
угол 1 и угол 2 смежные => 1+2=180° => угол 2=180-1=145°
угол 4 и угол 6 односторонние при а||b и секущей с => 4+6=180 => 6=180-35=145°
угол 2=6 как соответственные при а||b и секущей с (второй вариант доказательства того, что угол 2=6), 6=3 как накрест лежащие при а||b и секущей с угол 3=7 как соответственные или угол 6=7 как вертикальные =>
2=3=6=7=145°
б) угол 2 на 50° больше угла 1
1 и 2 смежные, => 1+2=180, угол 1=х, угол 2=х+50
х+х+50=180
2х=130
х=65°
=> угол 1=65°, угол 2=65+50=115°
из п. а берем что 1=4=5=8=> 4=5=8=65°
2=3=6=7 => 3=6=7=115°
В треугольнике ABL, CBL сторона ВL - общая, угол ABL = углу CBL, т.к. по условию BL - биссектриса угла АВС, стороны АВ и ВС равны как боковые стороны равнобедр треугольника. Следовательно, треугольник ABL = треугольнику CBL по 1 признаку равенства треугольников. отсюда можно сделать выводы, что : угол А = углу С; AL = LC ; угол ALB равен углу CLB.
т. к. отрезки AL, LC равны, То BL - медиана треугольника АВС.
Углы ALB, CLB смежные, следовательно, угол ALB + угол CLB = 180 градусов. Учитывая, что угол ALB = угол CLB = 90. Значит, отрезок BL - высота треугольника АВС.