Точка м однаково віддалена з усіх вершин правильного трикутника авс зі стороною 8√3 і віддалена від його площини на 6см. знайти відстань від точки м до вершини трикутника. треба терміново відповідь, будь !
В трапеции сумма углов при одном из оснований равна 90°. Найдите длину отрезка, соединяющего середины оснований, если длина отрезка, соединяющего середины диагоналей, равна 2.
— — —
Длина отрезка, соединяющего середины диагоналей трапеции, лежит на средней линии трапеции и равен полуразности оснований трапеции.Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований, равен полуразности оснований.
То есть получаем, что отрезки, соединяющие середины диагоналей и оснований, в нашей трапеции равны.
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60
В трапеции сумма углов при одном из оснований равна 90°. Найдите длину отрезка, соединяющего середины оснований, если длина отрезка, соединяющего середины диагоналей, равна 2.
— — —
Длина отрезка, соединяющего середины диагоналей трапеции, лежит на средней линии трапеции и равен полуразности оснований трапеции.Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований, равен полуразности оснований.То есть получаем, что отрезки, соединяющие середины диагоналей и оснований, в нашей трапеции равны.
2 (ед).