Точка находится на расстоянии 8 см от прямой. Из нее к прямой проведены перпендикуляр и наклонная, образующая с перпендикуляром угол 60°. Найдите длину наклонной.
Найдем длину окружности основания конуса. Так как развертка боковой поверхности полукруг, то: P = 2ПR P(осн.конуса) = 2ПR/2 = ПR Найдем радиус основания конуса: r = P / 2П r = ПR / 2П = R / 2 Рассмотрим осевое сечение конуса. Это равнобедренный треугольник. Высота конуса является высотой осевого сечения и делит его на два равных прямоугольных треугольника, у которых гипотенуза равна R, а катет R/2. Так как катет меньше гипотенузы в 2 раза, значит угол противолежащий этому катету равен 30°. 30° х 2 = 60° ответ: 60°.
P = 2ПR
P(осн.конуса) = 2ПR/2 = ПR
Найдем радиус основания конуса:
r = P / 2П
r = ПR / 2П = R / 2
Рассмотрим осевое сечение конуса. Это равнобедренный треугольник. Высота конуса является высотой осевого сечения и делит его на два равных прямоугольных треугольника, у которых гипотенуза равна R, а катет R/2. Так как катет меньше гипотенузы в 2 раза, значит угол противолежащий этому катету равен 30°.
30° х 2 = 60°
ответ: 60°.
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.