3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
Объяснение:
Дано: tg a + ctg a = 9.
Примем tg a = t, ctg a = 1/t.
Подставим в заданное уравнение: t + 1/ t = 9.
Приведя к общему знаменателю, получаем квадратное уравнение:
t² - 9t + 1 = 0.
Квадратное уравнение, решаем относительно t:
Ищем дискриминант:
D=(-9)^2-4*1*1=81-4=77;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1 = (√77-(-9))/(2*1) = (√77+9)/2 = √77/2+9/2=√77/2+4.5 ≈ 8.887482
t_2 = (-√77-(-9))/(2*1) = (-√77+9)/2 = -√77/2+9/2 = -√77/2+4.5 ≈ 0.112518.
Так как 1/8,887482 = 0,112518, а 1/8,887482 = 0,112518, то мы получили 2 пары значений тангенса и котангенса угла.
Далее используем формулы перехода от одной функции к другой.
sin α = tg α/+-√(1 + tg²α) = (√77/2+4.5)/(√(1 + (√77/2+4.5)²) = √((9-√77)/18) ≈ 0,111812 .
Аналогично для второго значения тангенса находим:
sin α = √((9+√77)/18) ≈ 0,993729.
Косинусы равны обратным значениям синусов.
cos α = √((9+√77)/18) ≈ 0,993729.
cos α = √((9-√77)/18) ≈ 0,111812 .
1.1) угол α-вписанный, значит, дуга AC=2*19=38
2) угол β-вписанный, значит, дуга AB=2*47=94
3) BD- диаметр, CD=180-(дуга АВ+ дуга АС)= 180-(38+94)=180-132=48
4) угол х- вписанный, Значит х=1/2 дуги CD=1/2*48=24
ответ: 24 (рисунок внизу)
2.1х+3х+5х=180
9х=180
х=20
1)20*1=20(1-ый угол)
2)20*3=60(2-ой угол)
3)20*5=100(3-ий угол)
Проверка:
20+60+80=180
3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
2)по теореме Пифагора:
20²-16²=√400-256=√144=12
ответ:12 см
Объяснение: рисунок относится к первому заданию
Удачи!