Центром окружности, описанной около треугольника, является точка пересечения его срединных перпендикуляров. В правильном треугольнике центры описанной и вписанной окружностей совпадают. а срединные перпендикуляры – его высоты ( биссектрисы, медианы). Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Следовательно, радиус R окружности, описанной около правильного треугольника, равен 2/3 его медианы ( высоты), а радиус r вписанной окружности равен 1/3 медианы (высоты).
r=R/2=6:2=3 см.
————————
Задачи на правильные треугольники и окружности, вписанные и описанные около них, встречаются часто. поэтому полезно запомнить это свойство, когда требуется решение без лишних вычислений: r=R/2=6:2=3 см.
18. ДВ⊥АВС, значит, используя теорему о трех перпендикулярах ⇒ДС⊥АС, ВО⊥АС. Поэтому все элементы находим с т. Пифагора. АВС- равнобедренный по условию,⇒АО=1/2АС=12/2=6см. ВО=√(АВ²-АО²)=√(100-36)=8см. ДО=√(ДВ²+ОВ²)=√(225+64)=√289=17см. 19. Р АВСД=32см⇒АВ=ВС=ДС=АД=32/4=8см.тогда по т. Пифагора ДВ=√(ДС²+СВ²)=8√2см.ОВ=1/2ДВ=4√2см.⇒КО=ОВ=4√2 и ΔКОВ-равнобедренный, ∠КОВ=90°, значит ∠КВО=45°.. ΔКОВ=ΔКОС=ΔКОД=ΔКОА по первому признаку⇒ ∠КВО=∠КСО=∠КДО=∠КАО, что и требовалось доказать.. К решению прикреплены 2 рисунка.
ответ: 3 см
Объяснение (очень подробно):
Центром окружности, описанной около треугольника, является точка пересечения его срединных перпендикуляров. В правильном треугольнике центры описанной и вписанной окружностей совпадают. а срединные перпендикуляры – его высоты ( биссектрисы, медианы). Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Следовательно, радиус R окружности, описанной около правильного треугольника, равен 2/3 его медианы ( высоты), а радиус r вписанной окружности равен 1/3 медианы (высоты).
r=R/2=6:2=3 см.
————————
Задачи на правильные треугольники и окружности, вписанные и описанные около них, встречаются часто. поэтому полезно запомнить это свойство, когда требуется решение без лишних вычислений: r=R/2=6:2=3 см.
АВС- равнобедренный по условию,⇒АО=1/2АС=12/2=6см.
ВО=√(АВ²-АО²)=√(100-36)=8см.
ДО=√(ДВ²+ОВ²)=√(225+64)=√289=17см.
19. Р АВСД=32см⇒АВ=ВС=ДС=АД=32/4=8см.тогда по т. Пифагора
ДВ=√(ДС²+СВ²)=8√2см.ОВ=1/2ДВ=4√2см.⇒КО=ОВ=4√2 и ΔКОВ-равнобедренный, ∠КОВ=90°, значит ∠КВО=45°..
ΔКОВ=ΔКОС=ΔКОД=ΔКОА по первому признаку⇒
∠КВО=∠КСО=∠КДО=∠КАО, что и требовалось доказать..
К решению прикреплены 2 рисунка.