Треугольник АВС - осевое сечение конуса. КР - проекция окружности касания шара, ВМ - высота конуса, КЕ=R, ∠КНА=α. Тр-ники КОЕ и НОМ подобны по трём углам (КР║АН, оба прямоугольные), ∠ЕКО=∠МОН=α. В тр-ке КО=КЕ/cosα=R/cosα. КО=МО - радиус шара. В тр-ке НОМ НО=МО/sinα=R/sinα·cosα. КН=КО+МО=R·(sinα+1)/(sinα·cosα)=2R(sinα+1)/sin2α. В тр-ке АКН ∠А=90-α. АО - биссектриса угла А. В тр-ке АОМ АМ=МО/tg(45-a/2)=R/(cosα·tg(45-α/2)). В четырёхугольнике АКОМ противолежащие углы К и М - прямые, прилежащие стороны КО и МО равны, значит он дельтоид, следовательно АМ=АК. Треугольники АВМ и АКН равны (АМ=АК, ∠А - общий и оба прямоугольные), значит ВМ=КН. Объём конуса: V=SH/3=π·АМ²·ВМ/3, V=2π·R³·(sinα+1)/[3sin2α·cos²α·tg²(45-α/2)] - это ответ.
Задача элементарная, но хорошо сформулированная. Не "какие-то" две вершины, а вершины той стороны, которой касаются обе упомянутые окружности (то есть - той, которая их общая внутренняя касательная). Доказать это очень просто. Центр вписанной окружности лежит на пересечении биссектрис внутренних углов, поэтому угол, под которым видна эта сторона из центра, равен 180° минус полусумма углов при этой стороне. Центр вневписанной окружности лежит на пересечении биссектрис внешних углов при этой стороне (и биссектрисы третьего внутреннего угла, но это тут не важно), то есть угол, под которым сторона видна из этой точки, равен просто полусумме внутренних углов (ну, 180° минус полусумма внешних, что и дает полусумму внутренних). То есть сумма этих углов равна 180°, что означает, что все четыре точки (два центра и концы стороны) лежат на одной окружности.
Тр-ники КОЕ и НОМ подобны по трём углам (КР║АН, оба прямоугольные), ∠ЕКО=∠МОН=α.
В тр-ке КО=КЕ/cosα=R/cosα.
КО=МО - радиус шара.
В тр-ке НОМ НО=МО/sinα=R/sinα·cosα.
КН=КО+МО=R·(sinα+1)/(sinα·cosα)=2R(sinα+1)/sin2α.
В тр-ке АКН ∠А=90-α.
АО - биссектриса угла А.
В тр-ке АОМ АМ=МО/tg(45-a/2)=R/(cosα·tg(45-α/2)).
В четырёхугольнике АКОМ противолежащие углы К и М - прямые, прилежащие стороны КО и МО равны, значит он дельтоид, следовательно АМ=АК.
Треугольники АВМ и АКН равны (АМ=АК, ∠А - общий и оба прямоугольные), значит ВМ=КН.
Объём конуса: V=SH/3=π·АМ²·ВМ/3,
V=2π·R³·(sinα+1)/[3sin2α·cos²α·tg²(45-α/2)] - это ответ.
Не "какие-то" две вершины, а вершины той стороны, которой касаются обе упомянутые окружности (то есть - той, которая их общая внутренняя касательная).
Доказать это очень просто.
Центр вписанной окружности лежит на пересечении биссектрис внутренних углов, поэтому угол, под которым видна эта сторона из центра, равен 180° минус полусумма углов при этой стороне.
Центр вневписанной окружности лежит на пересечении биссектрис внешних углов при этой стороне (и биссектрисы третьего внутреннего угла, но это тут не важно), то есть угол, под которым сторона видна из этой точки, равен просто полусумме внутренних углов (ну, 180° минус полусумма внешних, что и дает полусумму внутренних).
То есть сумма этих углов равна 180°, что означает, что все четыре точки (два центра и концы стороны) лежат на одной окружности.