ответ: Проведём диагонали ромба (они являются бисектрисами углов ) ,так как нас дано 60 градусов ,то когда мы проведем диагонали у нас получится два угла по 30 градусов.Теперь периметр равен сумме все сторон и равняется 29.2 м , тогда сторона ромба равна 29.4/4 (м)
Так как если мы проведем диагонали у нас получится 4 прямоугольных треугольника.Нам дано 30 градусов и гипотенуза (что является стороной ромба) теперь за свойством катета напротив 30 градусов он равен половине гипотенузе и равен (7.3/2) Так как у ромба в точке пересечения диагоналей они делятся напополам то меньшая диагональ равна 7.3 м
1. Треугольник РОС равен треугольнику АОК по двум углам и стороне между ними (<POC=<AOK - вертикальные, <PCO=<OAK - внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АС, а АО=ОС - диагональ АС в точке О делится пополам). Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак). Что и требовалось доказать. 2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20. Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20. ответ: Sapkd=20. 3. По Пифагору СК=√(64+25)=√89. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда PK=√41.
ответ: Проведём диагонали ромба (они являются бисектрисами углов ) ,так как нас дано 60 градусов ,то когда мы проведем диагонали у нас получится два угла по 30 градусов.Теперь периметр равен сумме все сторон и равняется 29.2 м , тогда сторона ромба равна 29.4/4 (м)
Так как если мы проведем диагонали у нас получится 4 прямоугольных треугольника.Нам дано 30 градусов и гипотенуза (что является стороной ромба) теперь за свойством катета напротив 30 градусов он равен половине гипотенузе и равен (7.3/2) Так как у ромба в точке пересечения диагоналей они делятся напополам то меньшая диагональ равна 7.3 м
Объяснение:
Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак).
Что и требовалось доказать.
2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20.
Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20.
ответ: Sapkd=20.
3. По Пифагору СК=√(64+25)=√89.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда
PK=√41.