Найдем площадь основания параллелепипеда S=аbsin60°=6·6·√3/2=18√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
Найдем площадь основания параллелепипеда S=аbsin60°=6·6·√3/2=18√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
V=Sh=6·18√3=108√3 cм³.
ответ: 108√3 см³.
Я новичок так что хз правильно или нееет..
7 см
Объяснение:
В любом треугольнике одна из сторон всегда меньше суммы двух других сторон.
1) Пусть основание АС треугольника АВС равно 7 см, а боковые стороны АВ = ВС = 3 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 3 + 3 = 6 см
Так как сумма длин двух сторон АВ и ВС меньше длины третьей стороны (6<7), то такой треугольник не существует.
2) Пусть основание АС треугольника АВС равно 3 см, а боковые стороны АВ = ВС = 7 см.
Проверим, существует такой треугольник или нет:
АВ + ВС = 7 + 7 = 14 см
Так как сумма длин двух сторон АВ и ВС больше длины третьей стороны (14>3), то такой треугольник существует.
Значит, третья сторона данного равнобедренного треугольника равна 7 см.
ответ: 7 см