1. конус — тело, полученное объединением всех лучей, исходящих из вершины конуса, и проходящих через плоскую поверхность.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.
да, да, нет
Объяснение:
Правило:
Длина любой стороны треугольника меньше суммы длин двух других сторон.
Проверим, выполняется ли это условие для наших отрезков.
а) 9; 9; 9;
9 < 9 + 9
9 < 18 - условие выполняется, значит, может. Это будет равносторонний треугольник.
б) 9, 12,13
9 < 12 +13 → 9 < 25
12 < 9 + 13 → 12 < 22
13 < 9 + 12 → 13 < 21
Все три условия выполняются. Эти отрезки могут быть сторонами треугольника.
в) 12, 13, 49
12 < 13 + 49 → 12 < 62
13 < 12 + 49 → 13 < 61
49 < 12 + 13 → 49 < 25 - это неравенство неверно, 49 > 5.
Следовательно, треугольника со сторонами 12,13,49 существовать не может.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.