Дано : треугольник ABC и треугольник HKP, AB = HK, AC = HP, угол LA = углу L
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Доказать : треугольник ABC = треугольнику HKP
Доказательство :
1)по условию теоремы угол A = углу H,поэтому треугольник ABC можно наложить на треугольник HKP так, что вершина A совместится с вершиной H,а стороны AB и AC наложатся соответственно на лучи HK и HKP
2) По условию AB= HK, AC = HP, следовательно, сторона AB совместится со стороной HP, а сторона AC - со стороной HK, в частности, совместятся точки B и K, C и P. Поэтому совместятся стороны P и BC.
3) Итак, треугольники ABC и HKP полностью совместятся, значит, они равны.
Теорема доказана.
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.