Треугольник abc угол a = 45 градусов угол с тупой bc = 17 см на продолжении ac за вершину взята точка d cd = 8 см bd = 15 см доказать: треугольник bcd - прямоугольный найти: s треугольник abd
так как сторона вс=17см сторона сд=8см сторона вд=15 см получаем 17^2=8^2+15^2 289=289 выполнена теорема пифагора следовательно треугольник всд прямоугольный
угол А=45 угол Д=90 СЛЕДОВАТЕЛЬНО УГОЛ В=45 ТО ЕСТЬ ТРЕУГОЛЬНИК АВД РАВНОБЕДРЕННЫЙ ВД=АД=15 СМ НАХОДИМ ПЛОЩАДЬ ОНА РАВНА ПОЛОВИНЕ ПРОИЗВЕДЕНИЯ КАТЕТОВ =1/2*АД*ВД=1/2*15*15=112,5 СМ^2
так как сторона вс=17см сторона сд=8см сторона вд=15 см получаем 17^2=8^2+15^2 289=289 выполнена теорема пифагора следовательно треугольник всд прямоугольный
угол А=45 угол Д=90 СЛЕДОВАТЕЛЬНО УГОЛ В=45 ТО ЕСТЬ ТРЕУГОЛЬНИК АВД РАВНОБЕДРЕННЫЙ ВД=АД=15 СМ НАХОДИМ ПЛОЩАДЬ ОНА РАВНА ПОЛОВИНЕ ПРОИЗВЕДЕНИЯ КАТЕТОВ =1/2*АД*ВД=1/2*15*15=112,5 СМ^2