ответ:1. ΔBDC, вписанный в окружность можно представить как <BDC что опирается на хорду ВС.
В ΔСАВ <САВ тоже опирается на отрезок ВС, причем <САВ=<BDC по условию. По теореме о вписанных углах в окружность равные углы опираются на одну и ту же хорду. Значит ΔСАВ вписан в туже окружность с площадью S=25π/4.
Определим радиус:
S=π·r² ⇒ r=√S/π
r=√25π/4π=5/2=2.5
2. Рассмотрим чет. ABCD. Все четыре точки лежат на одной окружности, значит четырехугольник вписан в данную окружность.
Вписать можно только тот выпуклый четырехугольник у которого сумма противоположных углов равна 180°. То есть
<BAD+<BCD=180° <BCD=180°-90°=90°
Выпуклый четырехугольник с двумя противоположными прямыми углами являевся прямоугольником.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
ответ:1. ΔBDC, вписанный в окружность можно представить как <BDC что опирается на хорду ВС.
В ΔСАВ <САВ тоже опирается на отрезок ВС, причем <САВ=<BDC по условию. По теореме о вписанных углах в окружность равные углы опираются на одну и ту же хорду. Значит ΔСАВ вписан в туже окружность с площадью S=25π/4.
Определим радиус:
S=π·r² ⇒ r=√S/π
r=√25π/4π=5/2=2.5
2. Рассмотрим чет. ABCD. Все четыре точки лежат на одной окружности, значит четырехугольник вписан в данную окружность.
Вписать можно только тот выпуклый четырехугольник у которого сумма противоположных углов равна 180°. То есть
<BAD+<BCD=180° <BCD=180°-90°=90°
Выпуклый четырехугольник с двумя противоположными прямыми углами являевся прямоугольником.
S=a·b=3·√16-9=3√7(кв.ед.)
Объяснение:
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301