Треугольник LMN, вписанный в окружность, делит её на три дуги. Вычисли угол LON и углы треугольника LMN, если даны два центральных угла: ∢ LOM = 100° и ∢ NOM = 130°. LON = °;
2. 4+7=11 (частей) Одна часть: 44/11 = 2 Большее основание равно: 2*4=8 см Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD. Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC. В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD. Что и требовалось доказать.
Р=10+12+14=36 см
2. 4+7=11 (частей)
Одна часть: 44/11 = 2
Большее основание равно: 2*4=8 см
Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD.
Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC.
В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD.
Что и требовалось доказать.
1) P=(АВ+ВС+AC)=150, треугольник равнобедренный, значит АВ=ВС
Так как длина стороны АС известна , то сумма длин 2 сторон (АВ+ВС)=
150-38=112
так как АВ=ВС, то 112/2=56 длина одной стороны АВ и ВС
2) Сумма градусов углов треугольника равна 180
соответственно третий угол равен (180-89-38)=53 °
3) сумма внешнего и внутреннего угла при одной вершине равна 180°
Значит, внутренний угол при вершине А равен 180-132=48°
по свойству равнобедеренных треугольников, угол С также равен 48°. Сума всех углов равна 180, значит (180-48-48)=84°
4) Так как угол АМС 122, а при одной вершине сумма внутреннего и внешнего равно 180, то угол АМВ= 180-122=58°
Угол АВС равен 102, угол АМВ равен 58°, сумма всех углов треугольника АВМ равна 180, значит угол ВАМ=180-102-58=20°
Так как АМ- биссектриса, и разбивает угол ВАС пополам, то угол ВАС= 20*2=40°
Теперь мы знаем два угла,ВАС= 40°, АВС=102°
Значит, угол АСВ=180-40-102=38°