Треугольник mab и квадрат abcd имеют общую сторону ab и их плоскости взаимно перпендикулярны. докажите, что угол mad - линейный угол двугранного угла с ребром ab и найдите его. с чертежом
A D < BAC = <AMD - как внутренние накрест лежащие при параллельных прямых AB и CD и секущей AM. Значит треугольник AMD - равнобедренный ,причём AD = MD. Пусть коэффициент пропорциональности равен k, тогда CM = k, а MD = AD = 3k. По условию периметр параллелограмма равен 84 cм, тогда полупериметр равен 42 см, то есть AD + CD = 42 AD = 3k, а CD = CM + MD = k + 3k = 4k 3k + 4k = 42 7k = 42 k = 6 AD = 3 * 6 = 18 см CD = 4 * 6 = 24 см ответ : 18 см, 18 см, 24 см, 24 см
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
B C
M
A D
< BAC = <AMD - как внутренние накрест лежащие при параллельных прямых AB и CD и секущей AM. Значит треугольник AMD - равнобедренный ,причём AD = MD. Пусть коэффициент пропорциональности равен k, тогда CM = k, а MD = AD = 3k.
По условию периметр параллелограмма равен 84 cм, тогда полупериметр равен 42 см, то есть AD + CD = 42
AD = 3k, а CD = CM + MD = k + 3k = 4k
3k + 4k = 42
7k = 42
k = 6
AD = 3 * 6 = 18 см
CD = 4 * 6 = 24 см
ответ : 18 см, 18 см, 24 см, 24 см
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301