а²=72√3 *2\ 3√3 =144\3=48 а=√48=4√3 радиус описанной вокруг шестиугольника окружности равна его стороне значит r=a=4√3 l=2πr=2π*4√3=8π√3
второе-эта фигура сегмент, ну не трудно же нарисовать окружность, произвольно хорду (отрезок соединяющий любые две точки на окружности, не бери диаметрально противоположные относительно цента) и закрасить получившуюся фигуру между окружностью и хордой. Если соединить эти концы хорды радиусом с центром окружности, получится треугольник-равносторонний, так как две стороны равны радиусу, как минимум, был бы треугольник равнобедренный а это значит два угла равны между собой и равны (180-60)\2=60 три угла по 60 значит треугольник равносторонний, то есть r=r=l=4 Sсегм=r²*(π*α\180-sinα)\2 S сегм=16*(π\3-sin60)\2= 8(π\3 - √3\2)=8π\3 - 4√3
1. В равнобедренном треугольнике углы при основании равны. 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Докажем свойство 1.
Дано: ΔАВС, АВ = ВС. Доказать: ∠А = ∠С.
Доказательство:
Проведем медиану ВН. АВ = ВС по условию, АН = НС, так как ВН медиана, ВН - общая сторона для треугольников АВН и СВН, ⇒ ΔАВН = ΔСВН по трем сторонам. В равных треугольниках напротив равных сторон лежат равные углы. Значит, ∠А = ∠С.
а²=72√3 *2\ 3√3 =144\3=48
а=√48=4√3
радиус описанной вокруг шестиугольника окружности равна его стороне
значит r=a=4√3
l=2πr=2π*4√3=8π√3
второе-эта фигура сегмент, ну не трудно же нарисовать окружность, произвольно хорду (отрезок соединяющий любые две точки на окружности, не бери диаметрально противоположные относительно цента) и закрасить получившуюся фигуру между окружностью и хордой.
Если соединить эти концы хорды радиусом с центром окружности, получится треугольник-равносторонний, так как две стороны равны радиусу, как минимум, был бы треугольник равнобедренный а это значит два угла равны между собой и равны (180-60)\2=60 три угла по 60 значит треугольник равносторонний, то есть r=r=l=4
Sсегм=r²*(π*α\180-sinα)\2
S сегм=16*(π\3-sin60)\2= 8(π\3 - √3\2)=8π\3 - 4√3
1. В равнобедренном треугольнике углы при основании равны.
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Докажем свойство 1.
Дано: ΔАВС, АВ = ВС.
Доказать: ∠А = ∠С.
Доказательство:
Проведем медиану ВН.
АВ = ВС по условию,
АН = НС, так как ВН медиана,
ВН - общая сторона для треугольников АВН и СВН, ⇒
ΔАВН = ΔСВН по трем сторонам.
В равных треугольниках напротив равных сторон лежат равные углы.
Значит, ∠А = ∠С.