Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.
так как периметр ромба равен 40 то его сторона 40/4=10
рассмотрим треугольник который образует меньшая диагональ с высотой, он прямоугольный так как одна сторона это высота те перпендикуляр, один угол равен 15, другой 90, значит третий угол 90-15=75 значит в треугольнике на который меньшая диагональ делит ромб два угола по 75 тогда третий 180+75*2=30
следовательно рассматривая треугольник который образует высота со стороной ромба мы видим прямоугольный треугольник у которого противолежащий катет надо найти, противолежащий ему угол равен 30, а гипотенуза это сорона ромба и равна 10
Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.
так как периметр ромба равен 40 то его сторона 40/4=10
рассмотрим треугольник который образует меньшая диагональ с высотой, он прямоугольный так как одна сторона это высота те перпендикуляр, один угол равен 15, другой 90, значит третий угол 90-15=75 значит в треугольнике на который меньшая диагональ делит ромб два угола по 75 тогда третий 180+75*2=30
следовательно рассматривая треугольник который образует высота со стороной ромба мы видим прямоугольный треугольник у которого противолежащий катет надо найти, противолежащий ему угол равен 30, а гипотенуза это сорона ромба и равна 10
тогда высота =10*sin30=10/2=5