Треугольники АВС и A1B1C1 подобны,причём A1B1 : АВ = A1C1 : АС = B1C1 : ВС = 2 : 3.Найдите площадь треугольника АВС,если площадь треугольника A1B1C1 равна 16 см.
Пусть даны треугольники ABC и A'B'C', при этом углы A, A' прямые, тогда BC, B'C' — гипотенузы, по условию, BC=B'C'. Пусть также ∠B=∠B'=β. Докажем, что ΔABC=ΔA'B'C'.
Сумма углов любого треугольника равна 180 градусам. Поскольку наши треугольники прямоугольные, сумма их острых углов равна 90 градусам. Таким образом, ∠B+∠C=90°, ∠C=90°-∠B=90°-β. Аналогично, ∠C'=90°-∠B'=90°-β. Следовательно, ∠C=∠C'. Это значит, что ΔABC и ΔA'B'C' равны по гипотенузе и двум прилежащим к ней острым углам (BC=B'C', ∠B=∠B', ∠C=∠C'), что и требовалось доказать.
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
Сумма углов любого треугольника равна 180 градусам. Поскольку наши треугольники прямоугольные, сумма их острых углов равна 90 градусам. Таким образом, ∠B+∠C=90°, ∠C=90°-∠B=90°-β. Аналогично, ∠C'=90°-∠B'=90°-β. Следовательно, ∠C=∠C'. Это значит, что ΔABC и ΔA'B'C' равны по гипотенузе и двум прилежащим к ней острым углам (BC=B'C', ∠B=∠B', ∠C=∠C'), что и требовалось доказать.