Центр вписанной в треугольник окружности - точка пересечения биссектрис его углов. Центр описанной окружности - точка пересечения срединных перпендикуляров. В правильном треугольнике биссектрисы, медианы и срединные перпендикуляры совпадают. Центры описанной и вписанной окружности также совпадают и лежат в точке пересечения медиан. R:r=2:1, считая от вершины (свойство медиан). Радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты. Радиус R описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒R=2r πr²=16π⇒r=4 R=2•4=8 πR²=π•8²=64π см²
а)Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранник;
б) Многоугольники, из которых составлен многогранник, называют его гранями;
в) Сторона граней многогранника называется ребрами, а концы рёбер - вершинами;
г) Отрезок, соединяющий две вершины , не принадлежащие одной грани, называется диагональю многогранника;
д) Многогранник, если он расположен по одну сторону от плоскости каждой грани, называется выпуклым;
е) В выпуклом многограннике сумма всех плоских углов при каждой вершине меньше 360;
Центр описанной окружности - точка пересечения срединных перпендикуляров.
В правильном треугольнике биссектрисы, медианы и срединные перпендикуляры совпадают. Центры описанной и вписанной окружности также совпадают и лежат в точке пересечения медиан.
R:r=2:1, считая от вершины (свойство медиан).
Радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
Радиус R описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒R=2r
πr²=16π⇒r=4
R=2•4=8
πR²=π•8²=64π см²