Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
По теореме синусов
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
По теореме о двух пересекающихся хордах произведение отрезков одной хорды равно произведению отрезков другой, пересекающейся с ней. Пусть коэффициент отношения СЕ:DE=x Тогда АЕ*ВЕ=3х*4х 12х² =108 х=3см CD=3x+4x=7х=7*3=21 см Наименьшим значением радиуса данной окружности будет половина большей из данных хорд при условии, что она - диаметр ( меньшая хорда по понятной причине не может быть диаметром). Следовательно, при диаметре АВ радиус r=(36+3):2=39:2=19,5 Если диаметр больше хорды АВ, то радиус не будет иметь наименьшее из возможных значений.
Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
По теореме синусов
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
Объем шара находится по стандартной формуле
Пусть коэффициент отношения СЕ:DE=x
Тогда АЕ*ВЕ=3х*4х
12х² =108
х=3см
CD=3x+4x=7х=7*3=21 см
Наименьшим значением радиуса данной окружности будет половина большей из данных хорд при условии, что она - диаметр ( меньшая хорда по понятной причине не может быть диаметром). Следовательно, при диаметре АВ радиус
r=(36+3):2=39:2=19,5
Если диаметр больше хорды АВ, то радиус не будет иметь наименьшее из возможных значений.