1. За теоремою про вертикальні кути, кут АОВ = куту DOC.
Маємо АОВ = куту DOC, DO=OB, AO=OC, тому трикутник АОВ=COD за першою ознакою рівності трикутників.
2. За теоремою про вертикальні кути, МКN=PKE.
Маємо МКN=PKE, MNK=KPE, NK=KP, тому трикутник KNM=KPE за другою ознакою рівності трикутників.
3. Маємо кут ВАС=DAC, BA=AD, AC - спільна сторона, тому трикутник АСВ=ACD за першою ознакою рівності трикутників.
4. Маємо ВС=АD, CBD=ADB, BD - спільна сторона, тому трикутник BDA=BDC за першою ознакою рівності трикутників.
5. Маємо DFM=DFE, MDF=EDF, DF - спільна сторона, тому трикутник DMF=DEF за другою ознакою рівності трикутників.
6. Маємо МАР=NPA, NAP=MPA, AP - спільна сторона, тому трикутник РМА=ANP за другою ознакою рівності трикутників.
8. Маємо ABD=CDB, ADB=CBD, BD - спільна сторона, тому трикутник ADB=CDB за другою ознакою рівності трикутників.
9. AD=BF, DB - спільна частина, тому AB=DF.
Маємо AB=DF, АВС=EDF, EFD=АСВ, тому трикутник АВС=DFЕ за другою ознакою рівності трикутників.
10. Оскільки кут EBD=DAE, AC=BC, то BD=AE.
Маємо кут EBD=DAE, BD=AE, вертикальні кути рівні(на малюнку немає точки, не можу позначити), то трикутники рівні (немає точки, не можу позначити) за другою ознакою рівності трикутників.
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
Объяснение:
1. За теоремою про вертикальні кути, кут АОВ = куту DOC.
Маємо АОВ = куту DOC, DO=OB, AO=OC, тому трикутник АОВ=COD за першою ознакою рівності трикутників.
2. За теоремою про вертикальні кути, МКN=PKE.
Маємо МКN=PKE, MNK=KPE, NK=KP, тому трикутник KNM=KPE за другою ознакою рівності трикутників.
3. Маємо кут ВАС=DAC, BA=AD, AC - спільна сторона, тому трикутник АСВ=ACD за першою ознакою рівності трикутників.
4. Маємо ВС=АD, CBD=ADB, BD - спільна сторона, тому трикутник BDA=BDC за першою ознакою рівності трикутників.
5. Маємо DFM=DFE, MDF=EDF, DF - спільна сторона, тому трикутник DMF=DEF за другою ознакою рівності трикутників.
6. Маємо МАР=NPA, NAP=MPA, AP - спільна сторона, тому трикутник РМА=ANP за другою ознакою рівності трикутників.
8. Маємо ABD=CDB, ADB=CBD, BD - спільна сторона, тому трикутник ADB=CDB за другою ознакою рівності трикутників.
9. AD=BF, DB - спільна частина, тому AB=DF.
Маємо AB=DF, АВС=EDF, EFD=АСВ, тому трикутник АВС=DFЕ за другою ознакою рівності трикутників.
10. Оскільки кут EBD=DAE, AC=BC, то BD=AE.
Маємо кут EBD=DAE, BD=AE, вертикальні кути рівні(на малюнку немає точки, не можу позначити), то трикутники рівні (немає точки, не можу позначити) за другою ознакою рівності трикутників.
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.