Для удобства расчёта примем сторону квадрата, равной 4, а высоту - 6. Задачу можно решить или геометрическим или координатным. Для этого определяем координаты точек пересечения заданной секущей плоскости с рёбрами параллелепипеда. Точка К делит ребро А1В1 так: А1К = (2/3)*4 = 8/3, КВ1 = 4/3. Тогда длина отрезка КМ = (4/3)*√2 = 4√2/3 (это след пересечения верхней грани секущей плоскостью). В нижней грани отрезок ТР делит рёбра пополам и равен 2√2. Точки О и Е на боковых рёбрах находим из вс построения. Отрезок ТР продлеваем до пересечения с рёбрами АВ и ВС. Из точек К и М проводим прямые в эти точки, которые пересекают рёбра АА1 и СС1 в точках О и Е. Детали приведены в приложениях.
Обозначим высоты как h1, h2, h3, а стороны к которым они проведены а1, а2 и а3.
Площадь треугольника можно вычислить через любую его сторону и высоту, проведённую к ней. Площадь при каждом вычислении будет одинаковая, значит все варианты можно приравнять. Деление на два при этом можно сразу сократить.
h1:h2:h3=2:3:4=2x:3x:4x ⇒ h1=2x, h2=3x, h3=4x.
h1·a1=h2·a2=h3·a3,
2x·a1=3x·a2 ⇒ 2·a1=3·a2 ⇒ a1:a2=3:2.
3x·a2=4x·a3 ⇒ a2:a3=4:3, значит отношение сторон треугольника: а1:а2:а3=3:2:1.5. Пусть это отношение будет 3у:2у:1.5у. Очевидно, что сторона а3 - наименьшая. Периметр Р=а1+а2+а3=3у+2у+1.5у, 6.5у=130, у=20, а3=1.5у=30 - это ответ.
Задачу можно решить или геометрическим или координатным.
Для этого определяем координаты точек пересечения заданной секущей плоскости с рёбрами параллелепипеда.
Точка К делит ребро А1В1 так: А1К = (2/3)*4 = 8/3, КВ1 = 4/3.
Тогда длина отрезка КМ = (4/3)*√2 = 4√2/3 (это след пересечения верхней грани секущей плоскостью).
В нижней грани отрезок ТР делит рёбра пополам и равен 2√2.
Точки О и Е на боковых рёбрах находим из вс построения.
Отрезок ТР продлеваем до пересечения с рёбрами АВ и ВС. Из точек К и М проводим прямые в эти точки, которые пересекают рёбра АА1 и СС1 в точках О и Е.
Детали приведены в приложениях.
Площадь треугольника можно вычислить через любую его сторону и высоту, проведённую к ней. Площадь при каждом вычислении будет одинаковая, значит все варианты можно приравнять. Деление на два при этом можно сразу сократить.
h1:h2:h3=2:3:4=2x:3x:4x ⇒ h1=2x, h2=3x, h3=4x.
h1·a1=h2·a2=h3·a3,
2x·a1=3x·a2 ⇒ 2·a1=3·a2 ⇒ a1:a2=3:2.
3x·a2=4x·a3 ⇒ a2:a3=4:3, значит отношение сторон треугольника:
а1:а2:а3=3:2:1.5. Пусть это отношение будет 3у:2у:1.5у. Очевидно, что сторона а3 - наименьшая.
Периметр Р=а1+а2+а3=3у+2у+1.5у,
6.5у=130,
у=20,
а3=1.5у=30 - это ответ.