При пересечении двух прямых образуется 4 угла <A, <B, <C, <D (см. рисунок), причем <A и <B (<A и <D, <D и <C, <B и <C) - смежные углы, одна сторона у них общая. <A и <C, <B и <D - вертикальные углы, стороны одного являются продолжением сторон другого. Смежные углы в сумме равны 180°, так как образуют развернутый угол. Итак, <A+<B=180° и <B+<C=180°, значит <A=180° - <B и <C=180° - <B. Так как <B - это один и тот же угол, то <A=<C, а это вертикальные углы. Можно сказать, что вертикальные углы равны, потому что они дополняют один и тот же угол до 180°.
<A и <C, <B и <D - вертикальные углы, стороны одного являются продолжением сторон другого.
Смежные углы в сумме равны 180°, так как образуют развернутый угол.
Итак, <A+<B=180° и <B+<C=180°, значит <A=180° - <B и <C=180° - <B.
Так как <B - это один и тот же угол, то <A=<C, а это вертикальные углы.
Можно сказать, что вертикальные углы равны, потому что они дополняют один и тот же угол до 180°.
Провести из точек B и D (тех, что лежат на линии b) перпендикуляры к линии a.
Получилось 2 треугольника, обозначим их как ABX и CDY.
Угол X = углу Y = 90 градусов
XA = YD (т.к. XA и YD парралельны прямым a и b)
угол B равен углу D (т.к. прямые a||b, и AB||CD.)
По второму свойству равенств треугольников: "Если сторона и 2 прилежащих угла равны, то равны и треугольники".
угл. X = угл. Y
XA = YD
угл. B = угл. D
следовательно
ΔABX = ΔCDX
Т.к. треугольники равны - равны и их стороны
Следовательно AB = CD
---------------Дополнение---------------------
Был найден еще