у меня кр У прямокутному трикутнику АВС (<С = 90 ̊):ВС=9 см, АС=12 см. Знайти невідомі гіпотенузу і кути. Округліть довжини катетів з точністю до сотих
Так как в параллелограмме противоположные углы всегда равны, то угол a= углу c, а угол b=углу d.
1) если а = 80, то и с=80. Сумма углов параллелограмма =360 градусов, значит углы b и d в сумме составляют 200 градусов, а по отдельности по 100, так как они равны.
А=С=80 градусов
B=D=100 градусов
2)так как односторонние углы (a,b / c,d) составляют в сумме 180 градусов, то угол а= 75 градусов, а угол b=105 (105+75=180/ 105-75=30)
А=С=75 градусов
B=D=105 градусов
3)так как углы а и с равны и в сумме дают 140, то по отдельности угол а и угол с = 140:2=по 70 градусов каждый
А=С =70
B=D = 110
4)угол B в два раза больше угла а, а в сумме они дают 180 градусов, следовательно, угол а=60, а угол B =60*2=120
А=С=60
B=D =120
5) проведём диагональ от угла B к углу D, получился треугольник. Он прямоугольный, так как один из угол =90 градусов. Нам дано 2 угла 90 и 30 градусов, значит третий угол (А) равен 60 градусов (так как сумма углов треугольника равна 180 градусов) . Углы а и с=60, а углы B и D= 360-(60+60)= 240. По отдельности они равны 240:2=120.
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
Так как в параллелограмме противоположные углы всегда равны, то угол a= углу c, а угол b=углу d.
1) если а = 80, то и с=80. Сумма углов параллелограмма =360 градусов, значит углы b и d в сумме составляют 200 градусов, а по отдельности по 100, так как они равны.
А=С=80 градусов
B=D=100 градусов
2)так как односторонние углы (a,b / c,d) составляют в сумме 180 градусов, то угол а= 75 градусов, а угол b=105 (105+75=180/ 105-75=30)
А=С=75 градусов
B=D=105 градусов
3)так как углы а и с равны и в сумме дают 140, то по отдельности угол а и угол с = 140:2=по 70 градусов каждый
А=С =70
B=D = 110
4)угол B в два раза больше угла а, а в сумме они дают 180 градусов, следовательно, угол а=60, а угол B =60*2=120
А=С=60
B=D =120
5) проведём диагональ от угла B к углу D, получился треугольник. Он прямоугольный, так как один из угол =90 градусов. Нам дано 2 угла 90 и 30 градусов, значит третий угол (А) равен 60 градусов (так как сумма углов треугольника равна 180 градусов) . Углы а и с=60, а углы B и D= 360-(60+60)= 240. По отдельности они равны 240:2=120.
А=С=60 градусов
B=D=120 градусов
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.