У октаэдра откололи все вершины так, что получилась фигура, у которой 6 граней — квадраты, а 8 граней — правильные шестиугольники. Рассчитай площадь поверхности этой фигуры, если длина ребра данного октаэдра 12 ед.
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
Проведем радиусы ОТ, ОК и ОР в точки касания. Они перпендикулярны сторонам ΔАВС.
Рассмотрим четырехугольник АКОР:
∠Р = ∠К = 90° ⇒ ∠А + ∠О = 180°, т.к. сумма углов четырехугольника 360°.
Тогда ∠РОК = 180° - 38° = 142°. Значит, и дуга РК равна 142°, т.к. угол РОК центральный.
∠РТК - вписанный, опирается на ту же дугу, ⇒ ∠РТК = 1/2 ∠РОК = 71°.
Аналогично рассуждаем для четырехугольника СРОТ:
∠РОТ = 360° - 90° - 90° - 106° = 74° ⇒ ∠РКТ = 1/2 ·74° = 37°
В четырехугольнике ВТОК:
∠КОТ = 360° - 90° - 90° - 36° = 144° ⇒ ∠КРТ = 1/2 ·144° = 72°
ответ: 37°, 71°, 72°
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113