Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания. Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, угол АВС=180°-30°=150° Пусть АВ=4см ВС=4√3 см АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС²=16+48+32√3*(√3):2=112 АС=√112=4√7 Высота призмы СС1=АС: ctg(60°)=(4√7):1/√3 CC1=4√21 Площадь боковой поверхности данной призмы S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Найдем длины сторон четырехугольника
AB^2=(9-6)^2 +(0-(-1))^2=3^2 +1^2=9+1=10
BC^2=(10-9)^2 +(-2-0)^2=1+4=5
CD^2=(7-10)^2 +(-3+2)^2=9+1=10
AD^2=(7-6)^2 +(-3+1)^2=1+4=5
Следовательно, AB=CD; BC=AD
АВСД-параллелограмм(по признаку)
АС - 1/2 ВД=(4;-1) - (-1;-1,5)=(4+1;-1+1,5)=(5;0,5), так как
вектор АС=(10-6;-2-(-1))=(4;-1)
ВД=(7-9;-3-0)=(-2;-3); 1/2ВД=(-1;-1,5)
не понимаю по-украински, если надо построить, то
проводимАК||BD; AK=BO
lдостраиваем до параллелограммма на сторонах АК и АС, получим точку Е, АСЕК-пар-мм
вектор Ас-АЕ=ЕС, т. е.проводим диагональ ЕС(стрелочка в точку С)