У правильній трикутній призмі діагональ бчної грані дорівнює 10см 1 утворює: варіант 1 — з стороною основи кут 60°. Знайдіть: 1) сторону основи призми; 2) висоту призми; 3) площу оснОВи призми; 4) обєм призми; 5) ребро куба, рівновеликого призмі;, 6) висоту прямокутного паралелепшеда, рівновеликого даній призмі, ЯКЩО Відомо, що сторони основи паралелепіпеда дорівнюють сторонам основи призми.
Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВМ/МС=8/6=4/3. Следовательно, отрезок ВМ=4. В треугольнике АВС по теореме косинусов: "Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними" Cosα = (b²+c²-a²)/2bc. (угол α - между b и c). В нашем случае: CosВ=(64+49-36)/2*8*7=11/16. Формула приведения: Sin²α+Cos²α=1. Тогда SinВ=√(1-121/16²)=√135/16. Площадь треугольника АВМ Sabm=(1/2)*АВ*ВМ*SinB=(1/2)8*4*√135/16=√135. ответ: Sabm=√135.
Следовательно, отрезок ВМ=4.
В треугольнике АВС по теореме косинусов: "Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними"
Cosα = (b²+c²-a²)/2bc. (угол α - между b и c). В нашем случае:
CosВ=(64+49-36)/2*8*7=11/16. Формула приведения: Sin²α+Cos²α=1.
Тогда SinВ=√(1-121/16²)=√135/16.
Площадь треугольника АВМ
Sabm=(1/2)*АВ*ВМ*SinB=(1/2)8*4*√135/16=√135.
ответ: Sabm=√135.