У правильній трикутній призмі медіана основи дорівнює
23
см. Знайдіть площу бічної поверхні цієї призми, якщо
діагональ бічної грані утворює з висотою кут 45°.
А, 16 см2 Б. 36 см2 В. 96 см2 Г. 48 см2
8. Основою піраміди є рівнобедрений трикутник з основою
6 см і бічною стороною 5 см. Бічні грані піраміди, що
містять бічні сторони рівнобедреного трикутника, пер-
пендикулярні до основи, а третя нахилена до площини
основи під кутом 60°. Знайдіть висоту піраміди.
4
Б. 4 см
В.
3
А. 43
см
CM
Г. 33
CM
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.