Пусть точка касания будет В, секущая АС, ближняя к А точка её пересечения с окружностью К. Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть. По этой теореме АВ²=АС:АК 144=18*АК АК=144:18=8⇒ СК=18 - 8=10 Соединим центр окружности с С и К. ∆ СОК - равнобедренный (боковые стороны - радиусы). Расстояние от точки до прямой - перпендикуляр. ОН⊥СК⇒ ОН - высота и медиана равнобедренного ∆ СОК. СН=КН=8:2=4 По т. Пифагора ОК=√(ОН²+КН²)=5 см
Рассмотрим осевое сечение пирамиды, изобразив его как вид сбоку. На рисунке SAF, SAB и SBC - грани пирамиды; А1, М1 и К1 - точки пересечения плоскости и рёбер SF.SA и SB соответственно. По условию боковое ребро вдвое больше стороны основания. Пусть сторона основания будет равна а, тогда боковая сторона равна 2а. АВ=FO=CO=a. а) Высота пирамиды из треугольника SCO: SO=√(SC²-CO²)=√(4a²-a²)=a√3. Из тр-ка SM1M2 SM2=SM·cos60=0.5a·1/2=a/4. Проекции SM2 и МО ра двух рисунках равны. МО=а/4. СМ=СО+МО=а+а/4=5а/4. Треугольники SAO и M1AO подобны по трём углам, значит SA/M1A=SO/M1M ⇒ M1M=SO/2=a√3/2. В ΔСМ1М tgC=M1M/CM=4a√3/(10a)=2√3/5. В ΔBSO tgВ=SO/BO=2а√3/а=2√3. (т.к. ВО=АВ/2=а/2). Пусть КВ=х, тогда СК=КВ+СВ=х+а/2. В ΔСК1К К1К=СК·tgC=(x+а/2)·2√3/5. В ΔВК1К К1К=КВ·tgВ=2х√3. Объединим уравнения: (х+а/2)·2√3/5=2х√3, 2х√3+а√3=10х√3, а√3=8х√3, х=а/8. Треугольники ВSО и ВК1К подобны по трём углам, значит: K1B/SB=ВК/ВО=а/8:а/2=1:4 ⇒ SK1=3K1B, значит К1В:SK1=1:3. Доказано. б) Пусть АF=у, тогда AC=FC-y=2a-y. В ΔFA1A ∠F=60° (так как FO=SF/2 ∠F=60°), А1А=AF·tgF=у√3. В ΔСА1А А1А=АС·tgС=(2а-у)·2√3/5. Объединив уравнения получим: у√3=(2а-у)·2√3/5, 5у=4а-2у, 7у=4а, у=4а/7. Коэффициент подобия треугольников FA1A и FSO: k=FA/FO=4a/7a=4/7. А1F=SF·k=2a·4/7=8a/7. SA1=SF-A1F=2a-8a/7=6a/7. SA1:A1F=6a/7:8a/7=3:4 - это ответ.
Если из точки, лежащей вне окружности, проведены касательная и
секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть.
По этой теореме АВ²=АС:АК
144=18*АК
АК=144:18=8⇒
СК=18 - 8=10
Соединим центр окружности с С и К.
∆ СОК - равнобедренный (боковые стороны - радиусы).
Расстояние от точки до прямой - перпендикуляр.
ОН⊥СК⇒ ОН - высота и медиана равнобедренного ∆ СОК.
СН=КН=8:2=4
По т. Пифагора ОК=√(ОН²+КН²)=5 см
На рисунке SAF, SAB и SBC - грани пирамиды; А1, М1 и К1 - точки пересечения плоскости и рёбер SF.SA и SB соответственно.
По условию боковое ребро вдвое больше стороны основания.
Пусть сторона основания будет равна а, тогда боковая сторона равна 2а.
АВ=FO=CO=a.
а) Высота пирамиды из треугольника SCO:
SO=√(SC²-CO²)=√(4a²-a²)=a√3.
Из тр-ка SM1M2 SM2=SM·cos60=0.5a·1/2=a/4.
Проекции SM2 и МО ра двух рисунках равны. МО=а/4.
СМ=СО+МО=а+а/4=5а/4.
Треугольники SAO и M1AO подобны по трём углам, значит SA/M1A=SO/M1M ⇒ M1M=SO/2=a√3/2.
В ΔСМ1М tgC=M1M/CM=4a√3/(10a)=2√3/5.
В ΔBSO tgВ=SO/BO=2а√3/а=2√3. (т.к. ВО=АВ/2=а/2).
Пусть КВ=х, тогда СК=КВ+СВ=х+а/2.
В ΔСК1К К1К=СК·tgC=(x+а/2)·2√3/5.
В ΔВК1К К1К=КВ·tgВ=2х√3.
Объединим уравнения:
(х+а/2)·2√3/5=2х√3,
2х√3+а√3=10х√3,
а√3=8х√3,
х=а/8.
Треугольники ВSО и ВК1К подобны по трём углам, значит:
K1B/SB=ВК/ВО=а/8:а/2=1:4 ⇒
SK1=3K1B, значит К1В:SK1=1:3.
Доказано.
б) Пусть АF=у, тогда AC=FC-y=2a-y.
В ΔFA1A ∠F=60° (так как FO=SF/2 ∠F=60°), А1А=AF·tgF=у√3.
В ΔСА1А А1А=АС·tgС=(2а-у)·2√3/5.
Объединив уравнения получим:
у√3=(2а-у)·2√3/5,
5у=4а-2у,
7у=4а,
у=4а/7.
Коэффициент подобия треугольников FA1A и FSO:
k=FA/FO=4a/7a=4/7.
А1F=SF·k=2a·4/7=8a/7.
SA1=SF-A1F=2a-8a/7=6a/7.
SA1:A1F=6a/7:8a/7=3:4 - это ответ.
Пришлось повозиться.